Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.8 * weight + 161
This means that on average for every extra kilogram weight a rider loses -1.8 positions in the result.
Vogels
1
75 kgTuft
2
77 kgFraser
3
71 kgŁukaszewicz
8
63 kgRollin
9
83 kgCappelle
12
71 kgWacker
14
65 kgGilbert
15
73 kgLupeikis
23
80 kgCooke
26
75 kgPiątek
27
71 kgBarry
28
72 kgHegreberg
33
72 kgSinkewitz
37
63 kgChmielewski
46
72 kgMcLeod
47
66 kgZarate
49
70 kgAggiano
58
63 kgRatti
62
64 kgFörster
65
83 kgWohlberg
67
63 kgPaumier
77
57 kgParisien
97
64 kg
1
75 kgTuft
2
77 kgFraser
3
71 kgŁukaszewicz
8
63 kgRollin
9
83 kgCappelle
12
71 kgWacker
14
65 kgGilbert
15
73 kgLupeikis
23
80 kgCooke
26
75 kgPiątek
27
71 kgBarry
28
72 kgHegreberg
33
72 kgSinkewitz
37
63 kgChmielewski
46
72 kgMcLeod
47
66 kgZarate
49
70 kgAggiano
58
63 kgRatti
62
64 kgFörster
65
83 kgWohlberg
67
63 kgPaumier
77
57 kgParisien
97
64 kg
Weight (KG) →
Result →
83
57
1
97
# | Rider | Weight (KG) |
---|---|---|
1 | VOGELS Henk | 75 |
2 | TUFT Svein | 77 |
3 | FRASER Gordon | 71 |
8 | ŁUKASZEWICZ Czesław | 63 |
9 | ROLLIN Dominique | 83 |
12 | CAPPELLE Andy | 71 |
14 | WACKER Eugen | 65 |
15 | GILBERT Martin | 73 |
23 | LUPEIKIS Remigius | 80 |
26 | COOKE Baden | 75 |
27 | PIĄTEK Zbigniew | 71 |
28 | BARRY Michael | 72 |
33 | HEGREBERG Morten | 72 |
37 | SINKEWITZ Patrik | 63 |
46 | CHMIELEWSKI Piotr | 72 |
47 | MCLEOD Ian | 66 |
49 | ZARATE Jesús | 70 |
58 | AGGIANO Elio | 63 |
62 | RATTI Eddy | 64 |
65 | FÖRSTER Robert | 83 |
67 | WOHLBERG Eric | 63 |
77 | PAUMIER Laurent | 57 |
97 | PARISIEN François | 64 |