Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 14
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Łukaszewicz
2
63 kgPiątek
7
71 kgBarry
10
72 kgPaumier
11
57 kgChmielewski
12
72 kgZarate
16
70 kgSinkewitz
20
63 kgWacker
25
65 kgWohlberg
31
63 kgCooke
34
75 kgVogels
36
75 kgHegreberg
40
72 kgTuft
42
77 kgLupeikis
47
80 kgParisien
49
64 kgGilbert
52
73 kgAggiano
58
63 kgFörster
69
83 kgMcLeod
70
66 kgCappelle
72
71 kgFraser
78
71 kgRatti
92
64 kg
2
63 kgPiątek
7
71 kgBarry
10
72 kgPaumier
11
57 kgChmielewski
12
72 kgZarate
16
70 kgSinkewitz
20
63 kgWacker
25
65 kgWohlberg
31
63 kgCooke
34
75 kgVogels
36
75 kgHegreberg
40
72 kgTuft
42
77 kgLupeikis
47
80 kgParisien
49
64 kgGilbert
52
73 kgAggiano
58
63 kgFörster
69
83 kgMcLeod
70
66 kgCappelle
72
71 kgFraser
78
71 kgRatti
92
64 kg
Weight (KG) →
Result →
83
57
2
92
# | Rider | Weight (KG) |
---|---|---|
2 | ŁUKASZEWICZ Czesław | 63 |
7 | PIĄTEK Zbigniew | 71 |
10 | BARRY Michael | 72 |
11 | PAUMIER Laurent | 57 |
12 | CHMIELEWSKI Piotr | 72 |
16 | ZARATE Jesús | 70 |
20 | SINKEWITZ Patrik | 63 |
25 | WACKER Eugen | 65 |
31 | WOHLBERG Eric | 63 |
34 | COOKE Baden | 75 |
36 | VOGELS Henk | 75 |
40 | HEGREBERG Morten | 72 |
42 | TUFT Svein | 77 |
47 | LUPEIKIS Remigius | 80 |
49 | PARISIEN François | 64 |
52 | GILBERT Martin | 73 |
58 | AGGIANO Elio | 63 |
69 | FÖRSTER Robert | 83 |
70 | MCLEOD Ian | 66 |
72 | CAPPELLE Andy | 71 |
78 | FRASER Gordon | 71 |
92 | RATTI Eddy | 64 |