Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 27
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Wacker
2
65 kgWohlberg
4
63 kgBarry
6
72 kgPiątek
7
71 kgVogels
9
75 kgTuft
13
77 kgChmielewski
15
72 kgSinkewitz
16
63 kgPaumier
18
57 kgFraser
23
71 kgParisien
24
64 kgŁukaszewicz
25
63 kgLupeikis
31
80 kgFörster
40
83 kgZarate
43
70 kgGilbert
50
73 kgCooke
67
75 kgAggiano
70
63 kgMcLeod
81
66 kgHegreberg
87
72 kgRatti
88
64 kgCappelle
99
71 kg
2
65 kgWohlberg
4
63 kgBarry
6
72 kgPiątek
7
71 kgVogels
9
75 kgTuft
13
77 kgChmielewski
15
72 kgSinkewitz
16
63 kgPaumier
18
57 kgFraser
23
71 kgParisien
24
64 kgŁukaszewicz
25
63 kgLupeikis
31
80 kgFörster
40
83 kgZarate
43
70 kgGilbert
50
73 kgCooke
67
75 kgAggiano
70
63 kgMcLeod
81
66 kgHegreberg
87
72 kgRatti
88
64 kgCappelle
99
71 kg
Weight (KG) →
Result →
83
57
2
99
# | Rider | Weight (KG) |
---|---|---|
2 | WACKER Eugen | 65 |
4 | WOHLBERG Eric | 63 |
6 | BARRY Michael | 72 |
7 | PIĄTEK Zbigniew | 71 |
9 | VOGELS Henk | 75 |
13 | TUFT Svein | 77 |
15 | CHMIELEWSKI Piotr | 72 |
16 | SINKEWITZ Patrik | 63 |
18 | PAUMIER Laurent | 57 |
23 | FRASER Gordon | 71 |
24 | PARISIEN François | 64 |
25 | ŁUKASZEWICZ Czesław | 63 |
31 | LUPEIKIS Remigius | 80 |
40 | FÖRSTER Robert | 83 |
43 | ZARATE Jesús | 70 |
50 | GILBERT Martin | 73 |
67 | COOKE Baden | 75 |
70 | AGGIANO Elio | 63 |
81 | MCLEOD Ian | 66 |
87 | HEGREBERG Morten | 72 |
88 | RATTI Eddy | 64 |
99 | CAPPELLE Andy | 71 |