Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.2 * weight - 50
This means that on average for every extra kilogram weight a rider loses 1.2 positions in the result.
Domínguez
1
72 kgIglinskiy
8
67 kgBrożyna
9
65 kgWohlberg
11
63 kgPower
12
68 kgRomanik
14
62 kgTuft
26
77 kgRollin
27
83 kgWacker
29
65 kgRoutley
32
69 kgLiese
33
75 kgO'Neill
37
72 kgChmielewski
38
72 kgLouder
39
73 kgBazayev
42
62 kgHuzarski
43
69 kgLacombe
44
81 kgWieditz
55
78 kgFraser
58
71 kgHenderson
62
75 kgGilbert
69
73 kgGerdemann
74
71 kgRoth
81
70 kg
1
72 kgIglinskiy
8
67 kgBrożyna
9
65 kgWohlberg
11
63 kgPower
12
68 kgRomanik
14
62 kgTuft
26
77 kgRollin
27
83 kgWacker
29
65 kgRoutley
32
69 kgLiese
33
75 kgO'Neill
37
72 kgChmielewski
38
72 kgLouder
39
73 kgBazayev
42
62 kgHuzarski
43
69 kgLacombe
44
81 kgWieditz
55
78 kgFraser
58
71 kgHenderson
62
75 kgGilbert
69
73 kgGerdemann
74
71 kgRoth
81
70 kg
Weight (KG) →
Result →
83
62
1
81
# | Rider | Weight (KG) |
---|---|---|
1 | DOMÍNGUEZ Iván | 72 |
8 | IGLINSKIY Maxim | 67 |
9 | BROŻYNA Tomasz | 65 |
11 | WOHLBERG Eric | 63 |
12 | POWER Ciarán | 68 |
14 | ROMANIK Radosław | 62 |
26 | TUFT Svein | 77 |
27 | ROLLIN Dominique | 83 |
29 | WACKER Eugen | 65 |
32 | ROUTLEY Will | 69 |
33 | LIESE Thomas | 75 |
37 | O'NEILL Nathan | 72 |
38 | CHMIELEWSKI Piotr | 72 |
39 | LOUDER Jeff | 73 |
42 | BAZAYEV Assan | 62 |
43 | HUZARSKI Bartosz | 69 |
44 | LACOMBE Keven | 81 |
55 | WIEDITZ Thorben | 78 |
58 | FRASER Gordon | 71 |
62 | HENDERSON Gregory | 75 |
69 | GILBERT Martin | 73 |
74 | GERDEMANN Linus | 71 |
81 | ROTH Ryan | 70 |