Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.6 * weight - 82
This means that on average for every extra kilogram weight a rider loses 1.6 positions in the result.
Brożyna
1
65 kgRomanik
3
62 kgO'Neill
5
72 kgIglinskiy
7
67 kgWacker
10
65 kgLouder
11
73 kgLiese
15
75 kgPower
16
68 kgBazayev
18
62 kgHuzarski
22
69 kgRollin
27
83 kgRoutley
28
69 kgFraser
30
71 kgDomínguez
31
72 kgGilbert
32
73 kgLacombe
35
81 kgChmielewski
38
72 kgWohlberg
54
63 kgTuft
59
77 kgRoth
63
70 kgGerdemann
64
71 kgHenderson
72
75 kgWieditz
73
78 kg
1
65 kgRomanik
3
62 kgO'Neill
5
72 kgIglinskiy
7
67 kgWacker
10
65 kgLouder
11
73 kgLiese
15
75 kgPower
16
68 kgBazayev
18
62 kgHuzarski
22
69 kgRollin
27
83 kgRoutley
28
69 kgFraser
30
71 kgDomínguez
31
72 kgGilbert
32
73 kgLacombe
35
81 kgChmielewski
38
72 kgWohlberg
54
63 kgTuft
59
77 kgRoth
63
70 kgGerdemann
64
71 kgHenderson
72
75 kgWieditz
73
78 kg
Weight (KG) →
Result →
83
62
1
73
# | Rider | Weight (KG) |
---|---|---|
1 | BROŻYNA Tomasz | 65 |
3 | ROMANIK Radosław | 62 |
5 | O'NEILL Nathan | 72 |
7 | IGLINSKIY Maxim | 67 |
10 | WACKER Eugen | 65 |
11 | LOUDER Jeff | 73 |
15 | LIESE Thomas | 75 |
16 | POWER Ciarán | 68 |
18 | BAZAYEV Assan | 62 |
22 | HUZARSKI Bartosz | 69 |
27 | ROLLIN Dominique | 83 |
28 | ROUTLEY Will | 69 |
30 | FRASER Gordon | 71 |
31 | DOMÍNGUEZ Iván | 72 |
32 | GILBERT Martin | 73 |
35 | LACOMBE Keven | 81 |
38 | CHMIELEWSKI Piotr | 72 |
54 | WOHLBERG Eric | 63 |
59 | TUFT Svein | 77 |
63 | ROTH Ryan | 70 |
64 | GERDEMANN Linus | 71 |
72 | HENDERSON Gregory | 75 |
73 | WIEDITZ Thorben | 78 |