Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 53
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
Brożyna
3
65 kgIglinskiy
5
67 kgRomanik
9
62 kgWohlberg
10
63 kgDomínguez
11
72 kgFraser
13
71 kgO'Neill
15
72 kgWacker
20
65 kgRoutley
21
69 kgHuzarski
24
69 kgLouder
26
73 kgPower
28
68 kgBazayev
33
62 kgRollin
34
83 kgLiese
35
75 kgChmielewski
36
72 kgGilbert
37
73 kg
3
65 kgIglinskiy
5
67 kgRomanik
9
62 kgWohlberg
10
63 kgDomínguez
11
72 kgFraser
13
71 kgO'Neill
15
72 kgWacker
20
65 kgRoutley
21
69 kgHuzarski
24
69 kgLouder
26
73 kgPower
28
68 kgBazayev
33
62 kgRollin
34
83 kgLiese
35
75 kgChmielewski
36
72 kgGilbert
37
73 kg
Weight (KG) →
Result →
83
62
3
37
# | Rider | Weight (KG) |
---|---|---|
3 | BROŻYNA Tomasz | 65 |
5 | IGLINSKIY Maxim | 67 |
9 | ROMANIK Radosław | 62 |
10 | WOHLBERG Eric | 63 |
11 | DOMÍNGUEZ Iván | 72 |
13 | FRASER Gordon | 71 |
15 | O'NEILL Nathan | 72 |
20 | WACKER Eugen | 65 |
21 | ROUTLEY Will | 69 |
24 | HUZARSKI Bartosz | 69 |
26 | LOUDER Jeff | 73 |
28 | POWER Ciarán | 68 |
33 | BAZAYEV Assan | 62 |
34 | ROLLIN Dominique | 83 |
35 | LIESE Thomas | 75 |
36 | CHMIELEWSKI Piotr | 72 |
37 | GILBERT Martin | 73 |