Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 43
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
Fraser
3
71 kgWohlberg
7
63 kgRoutley
12
69 kgIglinskiy
13
67 kgRollin
15
83 kgDomínguez
18
72 kgBazayev
21
62 kgBrożyna
23
65 kgWacker
26
65 kgRomanik
28
62 kgLiese
31
75 kgLacombe
32
81 kgPower
33
68 kgChmielewski
40
72 kgLouder
41
73 kgO'Neill
48
72 kgTuft
50
77 kgGilbert
58
73 kgWieditz
68
78 kgGerdemann
69
71 kgHenderson
72
75 kgHuzarski
73
69 kgRoth
80
70 kg
3
71 kgWohlberg
7
63 kgRoutley
12
69 kgIglinskiy
13
67 kgRollin
15
83 kgDomínguez
18
72 kgBazayev
21
62 kgBrożyna
23
65 kgWacker
26
65 kgRomanik
28
62 kgLiese
31
75 kgLacombe
32
81 kgPower
33
68 kgChmielewski
40
72 kgLouder
41
73 kgO'Neill
48
72 kgTuft
50
77 kgGilbert
58
73 kgWieditz
68
78 kgGerdemann
69
71 kgHenderson
72
75 kgHuzarski
73
69 kgRoth
80
70 kg
Weight (KG) →
Result →
83
62
3
80
# | Rider | Weight (KG) |
---|---|---|
3 | FRASER Gordon | 71 |
7 | WOHLBERG Eric | 63 |
12 | ROUTLEY Will | 69 |
13 | IGLINSKIY Maxim | 67 |
15 | ROLLIN Dominique | 83 |
18 | DOMÍNGUEZ Iván | 72 |
21 | BAZAYEV Assan | 62 |
23 | BROŻYNA Tomasz | 65 |
26 | WACKER Eugen | 65 |
28 | ROMANIK Radosław | 62 |
31 | LIESE Thomas | 75 |
32 | LACOMBE Keven | 81 |
33 | POWER Ciarán | 68 |
40 | CHMIELEWSKI Piotr | 72 |
41 | LOUDER Jeff | 73 |
48 | O'NEILL Nathan | 72 |
50 | TUFT Svein | 77 |
58 | GILBERT Martin | 73 |
68 | WIEDITZ Thorben | 78 |
69 | GERDEMANN Linus | 71 |
72 | HENDERSON Gregory | 75 |
73 | HUZARSKI Bartosz | 69 |
80 | ROTH Ryan | 70 |