Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2 * weight - 104
This means that on average for every extra kilogram weight a rider loses 2 positions in the result.
Romanik
1
62 kgBrożyna
2
65 kgIglinskiy
4
67 kgO'Neill
5
72 kgLiese
11
75 kgPower
16
68 kgBazayev
17
62 kgLouder
19
73 kgRoutley
20
69 kgWacker
23
65 kgWohlberg
30
63 kgRollin
32
83 kgChmielewski
44
72 kgWieditz
52
78 kgFraser
53
71 kgHenderson
54
75 kgGilbert
59
73 kgLacombe
60
81 kgTuft
64
77 kgHuzarski
67
69 kgGerdemann
73
71 kgDomínguez
74
72 kgRoth
78
70 kg
1
62 kgBrożyna
2
65 kgIglinskiy
4
67 kgO'Neill
5
72 kgLiese
11
75 kgPower
16
68 kgBazayev
17
62 kgLouder
19
73 kgRoutley
20
69 kgWacker
23
65 kgWohlberg
30
63 kgRollin
32
83 kgChmielewski
44
72 kgWieditz
52
78 kgFraser
53
71 kgHenderson
54
75 kgGilbert
59
73 kgLacombe
60
81 kgTuft
64
77 kgHuzarski
67
69 kgGerdemann
73
71 kgDomínguez
74
72 kgRoth
78
70 kg
Weight (KG) →
Result →
83
62
1
78
# | Rider | Weight (KG) |
---|---|---|
1 | ROMANIK Radosław | 62 |
2 | BROŻYNA Tomasz | 65 |
4 | IGLINSKIY Maxim | 67 |
5 | O'NEILL Nathan | 72 |
11 | LIESE Thomas | 75 |
16 | POWER Ciarán | 68 |
17 | BAZAYEV Assan | 62 |
19 | LOUDER Jeff | 73 |
20 | ROUTLEY Will | 69 |
23 | WACKER Eugen | 65 |
30 | WOHLBERG Eric | 63 |
32 | ROLLIN Dominique | 83 |
44 | CHMIELEWSKI Piotr | 72 |
52 | WIEDITZ Thorben | 78 |
53 | FRASER Gordon | 71 |
54 | HENDERSON Gregory | 75 |
59 | GILBERT Martin | 73 |
60 | LACOMBE Keven | 81 |
64 | TUFT Svein | 77 |
67 | HUZARSKI Bartosz | 69 |
73 | GERDEMANN Linus | 71 |
74 | DOMÍNGUEZ Iván | 72 |
78 | ROTH Ryan | 70 |