Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 18
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
O'Neill
1
72 kgBrożyna
3
65 kgLiese
4
75 kgTuft
5
77 kgWohlberg
8
63 kgWacker
9
65 kgRomanik
11
62 kgLouder
12
73 kgIglinskiy
13
67 kgLacombe
20
81 kgPower
23
68 kgRoutley
28
69 kgBazayev
34
62 kgChmielewski
35
72 kgRollin
40
83 kgDomínguez
43
72 kgWieditz
45
78 kgHenderson
49
75 kgFraser
57
71 kgHuzarski
69
69 kgGerdemann
72
71 kgRoth
74
70 kg
1
72 kgBrożyna
3
65 kgLiese
4
75 kgTuft
5
77 kgWohlberg
8
63 kgWacker
9
65 kgRomanik
11
62 kgLouder
12
73 kgIglinskiy
13
67 kgLacombe
20
81 kgPower
23
68 kgRoutley
28
69 kgBazayev
34
62 kgChmielewski
35
72 kgRollin
40
83 kgDomínguez
43
72 kgWieditz
45
78 kgHenderson
49
75 kgFraser
57
71 kgHuzarski
69
69 kgGerdemann
72
71 kgRoth
74
70 kg
Weight (KG) →
Result →
83
62
1
74
# | Rider | Weight (KG) |
---|---|---|
1 | O'NEILL Nathan | 72 |
3 | BROŻYNA Tomasz | 65 |
4 | LIESE Thomas | 75 |
5 | TUFT Svein | 77 |
8 | WOHLBERG Eric | 63 |
9 | WACKER Eugen | 65 |
11 | ROMANIK Radosław | 62 |
12 | LOUDER Jeff | 73 |
13 | IGLINSKIY Maxim | 67 |
20 | LACOMBE Keven | 81 |
23 | POWER Ciarán | 68 |
28 | ROUTLEY Will | 69 |
34 | BAZAYEV Assan | 62 |
35 | CHMIELEWSKI Piotr | 72 |
40 | ROLLIN Dominique | 83 |
43 | DOMÍNGUEZ Iván | 72 |
45 | WIEDITZ Thorben | 78 |
49 | HENDERSON Gregory | 75 |
57 | FRASER Gordon | 71 |
69 | HUZARSKI Bartosz | 69 |
72 | GERDEMANN Linus | 71 |
74 | ROTH Ryan | 70 |