Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 26
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Brożyna
1
65 kgIglinskiy
3
67 kgO'Neill
4
72 kgRomanik
7
62 kgWohlberg
11
63 kgPower
13
68 kgLiese
15
75 kgTuft
21
77 kgDomínguez
22
72 kgFraser
24
71 kgWacker
25
65 kgLouder
30
73 kgRoutley
33
69 kgHenderson
35
75 kgHuzarski
36
69 kgBazayev
39
62 kgChmielewski
41
72 kg
1
65 kgIglinskiy
3
67 kgO'Neill
4
72 kgRomanik
7
62 kgWohlberg
11
63 kgPower
13
68 kgLiese
15
75 kgTuft
21
77 kgDomínguez
22
72 kgFraser
24
71 kgWacker
25
65 kgLouder
30
73 kgRoutley
33
69 kgHenderson
35
75 kgHuzarski
36
69 kgBazayev
39
62 kgChmielewski
41
72 kg
Weight (KG) →
Result →
77
62
1
41
# | Rider | Weight (KG) |
---|---|---|
1 | BROŻYNA Tomasz | 65 |
3 | IGLINSKIY Maxim | 67 |
4 | O'NEILL Nathan | 72 |
7 | ROMANIK Radosław | 62 |
11 | WOHLBERG Eric | 63 |
13 | POWER Ciarán | 68 |
15 | LIESE Thomas | 75 |
21 | TUFT Svein | 77 |
22 | DOMÍNGUEZ Iván | 72 |
24 | FRASER Gordon | 71 |
25 | WACKER Eugen | 65 |
30 | LOUDER Jeff | 73 |
33 | ROUTLEY Will | 69 |
35 | HENDERSON Gregory | 75 |
36 | HUZARSKI Bartosz | 69 |
39 | BAZAYEV Assan | 62 |
41 | CHMIELEWSKI Piotr | 72 |