Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 41
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Power
1
68 kgIglinskiy
9
67 kgHenderson
10
75 kgBrożyna
11
65 kgO'Neill
13
72 kgBazayev
14
62 kgRomanik
15
62 kgLiese
16
75 kgWacker
22
65 kgTuft
24
77 kgRoutley
27
69 kgLacombe
28
81 kgLouder
29
73 kgWohlberg
35
63 kgDomínguez
40
72 kgChmielewski
41
72 kgFraser
42
71 kgHuzarski
54
69 kgGerdemann
61
71 kgWieditz
66
78 kgRoth
72
70 kg
1
68 kgIglinskiy
9
67 kgHenderson
10
75 kgBrożyna
11
65 kgO'Neill
13
72 kgBazayev
14
62 kgRomanik
15
62 kgLiese
16
75 kgWacker
22
65 kgTuft
24
77 kgRoutley
27
69 kgLacombe
28
81 kgLouder
29
73 kgWohlberg
35
63 kgDomínguez
40
72 kgChmielewski
41
72 kgFraser
42
71 kgHuzarski
54
69 kgGerdemann
61
71 kgWieditz
66
78 kgRoth
72
70 kg
Weight (KG) →
Result →
81
62
1
72
# | Rider | Weight (KG) |
---|---|---|
1 | POWER Ciarán | 68 |
9 | IGLINSKIY Maxim | 67 |
10 | HENDERSON Gregory | 75 |
11 | BROŻYNA Tomasz | 65 |
13 | O'NEILL Nathan | 72 |
14 | BAZAYEV Assan | 62 |
15 | ROMANIK Radosław | 62 |
16 | LIESE Thomas | 75 |
22 | WACKER Eugen | 65 |
24 | TUFT Svein | 77 |
27 | ROUTLEY Will | 69 |
28 | LACOMBE Keven | 81 |
29 | LOUDER Jeff | 73 |
35 | WOHLBERG Eric | 63 |
40 | DOMÍNGUEZ Iván | 72 |
41 | CHMIELEWSKI Piotr | 72 |
42 | FRASER Gordon | 71 |
54 | HUZARSKI Bartosz | 69 |
61 | GERDEMANN Linus | 71 |
66 | WIEDITZ Thorben | 78 |
72 | ROTH Ryan | 70 |