Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.8 * weight - 83
This means that on average for every extra kilogram weight a rider loses 1.8 positions in the result.
Lagutin
1
68 kgPate
4
73 kgPower
12
68 kgDowning
13
64 kgBookwalter
15
70 kgChadwick
20
75 kgKing
23
78 kgMeier
25
61 kgSulzberger
26
67 kgSulzberger
28
65 kgFrischkorn
31
68 kgParisien
41
64 kgVeilleux
45
75 kgTuft
53
77 kgRoth
62
70 kgWieditz
67
78 kgRangel
72
63 kgZirbel
75
91 kgWhite
84
72 kgFox
92
70 kgFlammang
109
80 kg
1
68 kgPate
4
73 kgPower
12
68 kgDowning
13
64 kgBookwalter
15
70 kgChadwick
20
75 kgKing
23
78 kgMeier
25
61 kgSulzberger
26
67 kgSulzberger
28
65 kgFrischkorn
31
68 kgParisien
41
64 kgVeilleux
45
75 kgTuft
53
77 kgRoth
62
70 kgWieditz
67
78 kgRangel
72
63 kgZirbel
75
91 kgWhite
84
72 kgFox
92
70 kgFlammang
109
80 kg
Weight (KG) →
Result →
91
61
1
109
# | Rider | Weight (KG) |
---|---|---|
1 | LAGUTIN Sergey | 68 |
4 | PATE Danny | 73 |
12 | POWER Ciarán | 68 |
13 | DOWNING Russell | 64 |
15 | BOOKWALTER Brent | 70 |
20 | CHADWICK Glen Alan | 75 |
23 | KING Edward | 78 |
25 | MEIER Christian | 61 |
26 | SULZBERGER Bernard | 67 |
28 | SULZBERGER Wesley | 65 |
31 | FRISCHKORN William | 68 |
41 | PARISIEN François | 64 |
45 | VEILLEUX David | 75 |
53 | TUFT Svein | 77 |
62 | ROTH Ryan | 70 |
67 | WIEDITZ Thorben | 78 |
72 | RANGEL Hector Hugo | 63 |
75 | ZIRBEL Tom | 91 |
84 | WHITE Matthew | 72 |
92 | FOX Morgan | 70 |
109 | FLAMMANG Tom | 80 |