Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 99
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Pate
1
73 kgLagutin
3
68 kgTuft
4
77 kgChadwick
5
75 kgZirbel
6
91 kgBookwalter
8
70 kgRoth
13
70 kgDowning
16
64 kgPower
17
68 kgMeier
22
61 kgKing
24
78 kgVeilleux
25
75 kgWieditz
37
78 kgRangel
39
63 kgParisien
54
64 kgFox
64
70 kgSulzberger
65
65 kgFlammang
70
80 kgSulzberger
77
67 kgFrischkorn
81
68 kgWhite
91
72 kg
1
73 kgLagutin
3
68 kgTuft
4
77 kgChadwick
5
75 kgZirbel
6
91 kgBookwalter
8
70 kgRoth
13
70 kgDowning
16
64 kgPower
17
68 kgMeier
22
61 kgKing
24
78 kgVeilleux
25
75 kgWieditz
37
78 kgRangel
39
63 kgParisien
54
64 kgFox
64
70 kgSulzberger
65
65 kgFlammang
70
80 kgSulzberger
77
67 kgFrischkorn
81
68 kgWhite
91
72 kg
Weight (KG) →
Result →
91
61
1
91
# | Rider | Weight (KG) |
---|---|---|
1 | PATE Danny | 73 |
3 | LAGUTIN Sergey | 68 |
4 | TUFT Svein | 77 |
5 | CHADWICK Glen Alan | 75 |
6 | ZIRBEL Tom | 91 |
8 | BOOKWALTER Brent | 70 |
13 | ROTH Ryan | 70 |
16 | DOWNING Russell | 64 |
17 | POWER Ciarán | 68 |
22 | MEIER Christian | 61 |
24 | KING Edward | 78 |
25 | VEILLEUX David | 75 |
37 | WIEDITZ Thorben | 78 |
39 | RANGEL Hector Hugo | 63 |
54 | PARISIEN François | 64 |
64 | FOX Morgan | 70 |
65 | SULZBERGER Wesley | 65 |
70 | FLAMMANG Tom | 80 |
77 | SULZBERGER Bernard | 67 |
81 | FRISCHKORN William | 68 |
91 | WHITE Matthew | 72 |