Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 45
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Sulzberger
2
65 kgDowning
8
64 kgPower
9
68 kgChadwick
12
75 kgLagutin
16
68 kgWieditz
17
78 kgSulzberger
18
67 kgFlammang
27
80 kgVeilleux
33
75 kgKing
39
78 kgRangel
52
63 kgPate
54
73 kgBookwalter
60
70 kgWhite
69
72 kgZirbel
72
91 kgFrischkorn
79
68 kgTuft
84
77 kgParisien
86
64 kgMeier
88
61 kgRoth
93
70 kgFox
97
70 kg
2
65 kgDowning
8
64 kgPower
9
68 kgChadwick
12
75 kgLagutin
16
68 kgWieditz
17
78 kgSulzberger
18
67 kgFlammang
27
80 kgVeilleux
33
75 kgKing
39
78 kgRangel
52
63 kgPate
54
73 kgBookwalter
60
70 kgWhite
69
72 kgZirbel
72
91 kgFrischkorn
79
68 kgTuft
84
77 kgParisien
86
64 kgMeier
88
61 kgRoth
93
70 kgFox
97
70 kg
Weight (KG) →
Result →
91
61
2
97
# | Rider | Weight (KG) |
---|---|---|
2 | SULZBERGER Wesley | 65 |
8 | DOWNING Russell | 64 |
9 | POWER Ciarán | 68 |
12 | CHADWICK Glen Alan | 75 |
16 | LAGUTIN Sergey | 68 |
17 | WIEDITZ Thorben | 78 |
18 | SULZBERGER Bernard | 67 |
27 | FLAMMANG Tom | 80 |
33 | VEILLEUX David | 75 |
39 | KING Edward | 78 |
52 | RANGEL Hector Hugo | 63 |
54 | PATE Danny | 73 |
60 | BOOKWALTER Brent | 70 |
69 | WHITE Matthew | 72 |
72 | ZIRBEL Tom | 91 |
79 | FRISCHKORN William | 68 |
84 | TUFT Svein | 77 |
86 | PARISIEN François | 64 |
88 | MEIER Christian | 61 |
93 | ROTH Ryan | 70 |
97 | FOX Morgan | 70 |