Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 26
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Downing
1
64 kgLagutin
2
68 kgPate
6
73 kgBookwalter
8
70 kgSulzberger
10
65 kgMeier
18
61 kgPower
31
68 kgChadwick
32
75 kgFlammang
34
80 kgTuft
35
77 kgRangel
39
63 kgVeilleux
47
75 kgParisien
49
64 kgZirbel
57
91 kgKing
58
78 kgWhite
59
72 kgWieditz
68
78 kgFox
73
70 kgSulzberger
79
67 kgRoth
82
70 kgFrischkorn
84
68 kg
1
64 kgLagutin
2
68 kgPate
6
73 kgBookwalter
8
70 kgSulzberger
10
65 kgMeier
18
61 kgPower
31
68 kgChadwick
32
75 kgFlammang
34
80 kgTuft
35
77 kgRangel
39
63 kgVeilleux
47
75 kgParisien
49
64 kgZirbel
57
91 kgKing
58
78 kgWhite
59
72 kgWieditz
68
78 kgFox
73
70 kgSulzberger
79
67 kgRoth
82
70 kgFrischkorn
84
68 kg
Weight (KG) →
Result →
91
61
1
84
# | Rider | Weight (KG) |
---|---|---|
1 | DOWNING Russell | 64 |
2 | LAGUTIN Sergey | 68 |
6 | PATE Danny | 73 |
8 | BOOKWALTER Brent | 70 |
10 | SULZBERGER Wesley | 65 |
18 | MEIER Christian | 61 |
31 | POWER Ciarán | 68 |
32 | CHADWICK Glen Alan | 75 |
34 | FLAMMANG Tom | 80 |
35 | TUFT Svein | 77 |
39 | RANGEL Hector Hugo | 63 |
47 | VEILLEUX David | 75 |
49 | PARISIEN François | 64 |
57 | ZIRBEL Tom | 91 |
58 | KING Edward | 78 |
59 | WHITE Matthew | 72 |
68 | WIEDITZ Thorben | 78 |
73 | FOX Morgan | 70 |
79 | SULZBERGER Bernard | 67 |
82 | ROTH Ryan | 70 |
84 | FRISCHKORN William | 68 |