Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Rollin
2
83 kgDay
4
68 kgO'Loughlin
5
68 kgPate
6
73 kgMamos
8
72 kgTuft
10
77 kgChadwick
25
75 kgParisien
26
64 kgRangel
29
63 kgMeier
31
61 kgWohlberg
35
63 kgHowes
37
61 kgSchillinger
40
72 kgLagutin
42
68 kgRoutley
49
69 kgPower
50
68 kgVeilleux
68
75 kgWieditz
73
78 kgGilbert
76
73 kgLacombe
78
81 kgMortensen
79
70 kg
2
83 kgDay
4
68 kgO'Loughlin
5
68 kgPate
6
73 kgMamos
8
72 kgTuft
10
77 kgChadwick
25
75 kgParisien
26
64 kgRangel
29
63 kgMeier
31
61 kgWohlberg
35
63 kgHowes
37
61 kgSchillinger
40
72 kgLagutin
42
68 kgRoutley
49
69 kgPower
50
68 kgVeilleux
68
75 kgWieditz
73
78 kgGilbert
76
73 kgLacombe
78
81 kgMortensen
79
70 kg
Weight (KG) →
Result →
83
61
2
79
# | Rider | Weight (KG) |
---|---|---|
2 | ROLLIN Dominique | 83 |
4 | DAY Benjamin | 68 |
5 | O'LOUGHLIN David | 68 |
6 | PATE Danny | 73 |
8 | MAMOS Philipp | 72 |
10 | TUFT Svein | 77 |
25 | CHADWICK Glen Alan | 75 |
26 | PARISIEN François | 64 |
29 | RANGEL Hector Hugo | 63 |
31 | MEIER Christian | 61 |
35 | WOHLBERG Eric | 63 |
37 | HOWES Alex | 61 |
40 | SCHILLINGER Andreas | 72 |
42 | LAGUTIN Sergey | 68 |
49 | ROUTLEY Will | 69 |
50 | POWER Ciarán | 68 |
68 | VEILLEUX David | 75 |
73 | WIEDITZ Thorben | 78 |
76 | GILBERT Martin | 73 |
78 | LACOMBE Keven | 81 |
79 | MORTENSEN Martin | 70 |