Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 45
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Chadwick
1
75 kgRangel
2
63 kgParisien
3
64 kgMortensen
7
70 kgWohlberg
9
63 kgRollin
10
83 kgDay
12
68 kgPower
13
68 kgMamos
14
72 kgO'Loughlin
18
68 kgGilbert
23
73 kgLagutin
25
68 kgVeilleux
27
75 kgHowes
29
61 kgPate
30
73 kgLacombe
40
81 kgMeier
42
61 kgTuft
50
77 kgRoutley
54
69 kgSchillinger
65
72 kgWieditz
82
78 kg
1
75 kgRangel
2
63 kgParisien
3
64 kgMortensen
7
70 kgWohlberg
9
63 kgRollin
10
83 kgDay
12
68 kgPower
13
68 kgMamos
14
72 kgO'Loughlin
18
68 kgGilbert
23
73 kgLagutin
25
68 kgVeilleux
27
75 kgHowes
29
61 kgPate
30
73 kgLacombe
40
81 kgMeier
42
61 kgTuft
50
77 kgRoutley
54
69 kgSchillinger
65
72 kgWieditz
82
78 kg
Weight (KG) →
Result →
83
61
1
82
# | Rider | Weight (KG) |
---|---|---|
1 | CHADWICK Glen Alan | 75 |
2 | RANGEL Hector Hugo | 63 |
3 | PARISIEN François | 64 |
7 | MORTENSEN Martin | 70 |
9 | WOHLBERG Eric | 63 |
10 | ROLLIN Dominique | 83 |
12 | DAY Benjamin | 68 |
13 | POWER Ciarán | 68 |
14 | MAMOS Philipp | 72 |
18 | O'LOUGHLIN David | 68 |
23 | GILBERT Martin | 73 |
25 | LAGUTIN Sergey | 68 |
27 | VEILLEUX David | 75 |
29 | HOWES Alex | 61 |
30 | PATE Danny | 73 |
40 | LACOMBE Keven | 81 |
42 | MEIER Christian | 61 |
50 | TUFT Svein | 77 |
54 | ROUTLEY Will | 69 |
65 | SCHILLINGER Andreas | 72 |
82 | WIEDITZ Thorben | 78 |