Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 23
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Chadwick
1
75 kgParisien
2
64 kgLagutin
3
68 kgDay
5
68 kgTuft
6
77 kgO'Loughlin
8
68 kgPate
9
73 kgRangel
10
63 kgMeier
13
61 kgMamos
15
72 kgWohlberg
17
63 kgRollin
18
83 kgRoutley
30
69 kgSchillinger
33
72 kgGilbert
43
73 kgLacombe
45
81 kgPower
48
68 kgHowes
64
61 kgMortensen
70
70 kg
1
75 kgParisien
2
64 kgLagutin
3
68 kgDay
5
68 kgTuft
6
77 kgO'Loughlin
8
68 kgPate
9
73 kgRangel
10
63 kgMeier
13
61 kgMamos
15
72 kgWohlberg
17
63 kgRollin
18
83 kgRoutley
30
69 kgSchillinger
33
72 kgGilbert
43
73 kgLacombe
45
81 kgPower
48
68 kgHowes
64
61 kgMortensen
70
70 kg
Weight (KG) →
Result →
83
61
1
70
# | Rider | Weight (KG) |
---|---|---|
1 | CHADWICK Glen Alan | 75 |
2 | PARISIEN François | 64 |
3 | LAGUTIN Sergey | 68 |
5 | DAY Benjamin | 68 |
6 | TUFT Svein | 77 |
8 | O'LOUGHLIN David | 68 |
9 | PATE Danny | 73 |
10 | RANGEL Hector Hugo | 63 |
13 | MEIER Christian | 61 |
15 | MAMOS Philipp | 72 |
17 | WOHLBERG Eric | 63 |
18 | ROLLIN Dominique | 83 |
30 | ROUTLEY Will | 69 |
33 | SCHILLINGER Andreas | 72 |
43 | GILBERT Martin | 73 |
45 | LACOMBE Keven | 81 |
48 | POWER Ciarán | 68 |
64 | HOWES Alex | 61 |
70 | MORTENSEN Martin | 70 |