Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 39
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Day
1
68 kgPate
2
73 kgTuft
3
77 kgO'Loughlin
4
68 kgChadwick
5
75 kgRollin
7
83 kgParisien
8
64 kgLagutin
12
68 kgWohlberg
13
63 kgMamos
14
72 kgMeier
15
61 kgRangel
18
63 kgSchillinger
35
72 kgGilbert
36
73 kgPower
38
68 kgLacombe
47
81 kgHowes
54
61 kgRoutley
55
69 kgMortensen
77
70 kg
1
68 kgPate
2
73 kgTuft
3
77 kgO'Loughlin
4
68 kgChadwick
5
75 kgRollin
7
83 kgParisien
8
64 kgLagutin
12
68 kgWohlberg
13
63 kgMamos
14
72 kgMeier
15
61 kgRangel
18
63 kgSchillinger
35
72 kgGilbert
36
73 kgPower
38
68 kgLacombe
47
81 kgHowes
54
61 kgRoutley
55
69 kgMortensen
77
70 kg
Weight (KG) →
Result →
83
61
1
77
# | Rider | Weight (KG) |
---|---|---|
1 | DAY Benjamin | 68 |
2 | PATE Danny | 73 |
3 | TUFT Svein | 77 |
4 | O'LOUGHLIN David | 68 |
5 | CHADWICK Glen Alan | 75 |
7 | ROLLIN Dominique | 83 |
8 | PARISIEN François | 64 |
12 | LAGUTIN Sergey | 68 |
13 | WOHLBERG Eric | 63 |
14 | MAMOS Philipp | 72 |
15 | MEIER Christian | 61 |
18 | RANGEL Hector Hugo | 63 |
35 | SCHILLINGER Andreas | 72 |
36 | GILBERT Martin | 73 |
38 | POWER Ciarán | 68 |
47 | LACOMBE Keven | 81 |
54 | HOWES Alex | 61 |
55 | ROUTLEY Will | 69 |
77 | MORTENSEN Martin | 70 |