Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 133
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Rollin
2
83 kgLacombe
3
81 kgO'Loughlin
4
68 kgGilbert
5
73 kgDay
7
68 kgChadwick
11
75 kgMamos
12
72 kgPate
13
73 kgLagutin
16
68 kgTuft
18
77 kgParisien
26
64 kgMeier
29
61 kgRangel
30
63 kgWohlberg
34
63 kgRoutley
41
69 kgSchillinger
46
72 kgHowes
47
61 kgMortensen
58
70 kgPower
70
68 kg
2
83 kgLacombe
3
81 kgO'Loughlin
4
68 kgGilbert
5
73 kgDay
7
68 kgChadwick
11
75 kgMamos
12
72 kgPate
13
73 kgLagutin
16
68 kgTuft
18
77 kgParisien
26
64 kgMeier
29
61 kgRangel
30
63 kgWohlberg
34
63 kgRoutley
41
69 kgSchillinger
46
72 kgHowes
47
61 kgMortensen
58
70 kgPower
70
68 kg
Weight (KG) →
Result →
83
61
2
70
# | Rider | Weight (KG) |
---|---|---|
2 | ROLLIN Dominique | 83 |
3 | LACOMBE Keven | 81 |
4 | O'LOUGHLIN David | 68 |
5 | GILBERT Martin | 73 |
7 | DAY Benjamin | 68 |
11 | CHADWICK Glen Alan | 75 |
12 | MAMOS Philipp | 72 |
13 | PATE Danny | 73 |
16 | LAGUTIN Sergey | 68 |
18 | TUFT Svein | 77 |
26 | PARISIEN François | 64 |
29 | MEIER Christian | 61 |
30 | RANGEL Hector Hugo | 63 |
34 | WOHLBERG Eric | 63 |
41 | ROUTLEY Will | 69 |
46 | SCHILLINGER Andreas | 72 |
47 | HOWES Alex | 61 |
58 | MORTENSEN Martin | 70 |
70 | POWER Ciarán | 68 |