Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 71
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Schillinger
2
72 kgMamos
7
72 kgDay
8
68 kgPate
9
73 kgTuft
10
77 kgRollin
14
83 kgO'Loughlin
17
68 kgChadwick
19
75 kgRangel
26
63 kgLagutin
31
68 kgWohlberg
37
63 kgMeier
38
61 kgParisien
41
64 kgPower
46
68 kgHowes
53
61 kgRoutley
59
69 kgGilbert
66
73 kgLacombe
67
81 kg
2
72 kgMamos
7
72 kgDay
8
68 kgPate
9
73 kgTuft
10
77 kgRollin
14
83 kgO'Loughlin
17
68 kgChadwick
19
75 kgRangel
26
63 kgLagutin
31
68 kgWohlberg
37
63 kgMeier
38
61 kgParisien
41
64 kgPower
46
68 kgHowes
53
61 kgRoutley
59
69 kgGilbert
66
73 kgLacombe
67
81 kg
Weight (KG) →
Result →
83
61
2
67
# | Rider | Weight (KG) |
---|---|---|
2 | SCHILLINGER Andreas | 72 |
7 | MAMOS Philipp | 72 |
8 | DAY Benjamin | 68 |
9 | PATE Danny | 73 |
10 | TUFT Svein | 77 |
14 | ROLLIN Dominique | 83 |
17 | O'LOUGHLIN David | 68 |
19 | CHADWICK Glen Alan | 75 |
26 | RANGEL Hector Hugo | 63 |
31 | LAGUTIN Sergey | 68 |
37 | WOHLBERG Eric | 63 |
38 | MEIER Christian | 61 |
41 | PARISIEN François | 64 |
46 | POWER Ciarán | 68 |
53 | HOWES Alex | 61 |
59 | ROUTLEY Will | 69 |
66 | GILBERT Martin | 73 |
67 | LACOMBE Keven | 81 |