Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 59
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Aldape
1
62 kgSchillinger
3
72 kgBaumann
4
72 kgTuft
6
77 kgPower
7
68 kgChadwick
8
75 kgWilson
9
72 kgMetlushenko
10
82 kgMamos
12
72 kgJones
14
64 kgLapthorne
16
70 kgParisien
18
64 kgNissen
20
65 kgNewton
35
69 kgRoth
36
70 kgOyarzún
38
66 kgArango
39
62 kgBell
40
75 kg
1
62 kgSchillinger
3
72 kgBaumann
4
72 kgTuft
6
77 kgPower
7
68 kgChadwick
8
75 kgWilson
9
72 kgMetlushenko
10
82 kgMamos
12
72 kgJones
14
64 kgLapthorne
16
70 kgParisien
18
64 kgNissen
20
65 kgNewton
35
69 kgRoth
36
70 kgOyarzún
38
66 kgArango
39
62 kgBell
40
75 kg
Weight (KG) →
Result →
82
62
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | ALDAPE Moises Antonio | 62 |
3 | SCHILLINGER Andreas | 72 |
4 | BAUMANN Eric | 72 |
6 | TUFT Svein | 77 |
7 | POWER Ciarán | 68 |
8 | CHADWICK Glen Alan | 75 |
9 | WILSON Matthew | 72 |
10 | METLUSHENKO Yuri | 82 |
12 | MAMOS Philipp | 72 |
14 | JONES Chris | 64 |
16 | LAPTHORNE Darren | 70 |
18 | PARISIEN François | 64 |
20 | NISSEN Søren | 65 |
35 | NEWTON Christopher | 69 |
36 | ROTH Ryan | 70 |
38 | OYARZÚN Carlos Iván | 66 |
39 | ARANGO Juan Esteban | 62 |
40 | BELL Zach | 75 |