Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 29
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Henao
2
61 kgAtapuma
3
59 kgJones
4
64 kgSelander
5
72 kgSulzberger
7
67 kgDay
8
68 kgWyss
11
65 kgBulgarelli
12
69 kgRoth
14
70 kgFairly
17
60 kgBeyer
18
63 kgStetina
19
63 kgStewart
21
72 kgLapthorne
24
70 kgCraven
25
75 kgCruz
26
66 kgHowes
27
61 kgBewley
28
81 kgGagne
31
67 kgSuarez
35
67 kgKreder
37
70 kg
2
61 kgAtapuma
3
59 kgJones
4
64 kgSelander
5
72 kgSulzberger
7
67 kgDay
8
68 kgWyss
11
65 kgBulgarelli
12
69 kgRoth
14
70 kgFairly
17
60 kgBeyer
18
63 kgStetina
19
63 kgStewart
21
72 kgLapthorne
24
70 kgCraven
25
75 kgCruz
26
66 kgHowes
27
61 kgBewley
28
81 kgGagne
31
67 kgSuarez
35
67 kgKreder
37
70 kg
Weight (KG) →
Result →
81
59
2
37
# | Rider | Weight (KG) |
---|---|---|
2 | HENAO Sergio | 61 |
3 | ATAPUMA Darwin | 59 |
4 | JONES Chris | 64 |
5 | SELANDER Bjorn | 72 |
7 | SULZBERGER Bernard | 67 |
8 | DAY Benjamin | 68 |
11 | WYSS Danilo | 65 |
12 | BULGARELLI Otavio | 69 |
14 | ROTH Ryan | 70 |
17 | FAIRLY Caleb | 60 |
18 | BEYER Chad | 63 |
19 | STETINA Peter | 63 |
21 | STEWART Jackson | 72 |
24 | LAPTHORNE Darren | 70 |
25 | CRAVEN Dan | 75 |
26 | CRUZ Antonio | 66 |
27 | HOWES Alex | 61 |
28 | BEWLEY Sam | 81 |
31 | GAGNE Raphael | 67 |
35 | SUAREZ Camilo Andres | 67 |
37 | KREDER Raymond | 70 |