Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 18
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Sulzberger
1
67 kgSelander
2
72 kgWyss
3
65 kgDay
5
68 kgFairly
6
60 kgStetina
7
63 kgHenao
10
61 kgAtapuma
13
59 kgJones
14
64 kgStewart
16
72 kgRoth
17
70 kgBulgarelli
18
69 kgBeyer
20
63 kgLapthorne
21
70 kgCraven
23
75 kgHowes
25
61 kgBewley
26
81 kgCruz
27
66 kgKreder
31
70 kgSuarez
36
67 kgGagne
37
67 kg
1
67 kgSelander
2
72 kgWyss
3
65 kgDay
5
68 kgFairly
6
60 kgStetina
7
63 kgHenao
10
61 kgAtapuma
13
59 kgJones
14
64 kgStewart
16
72 kgRoth
17
70 kgBulgarelli
18
69 kgBeyer
20
63 kgLapthorne
21
70 kgCraven
23
75 kgHowes
25
61 kgBewley
26
81 kgCruz
27
66 kgKreder
31
70 kgSuarez
36
67 kgGagne
37
67 kg
Weight (KG) →
Result →
81
59
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | SULZBERGER Bernard | 67 |
2 | SELANDER Bjorn | 72 |
3 | WYSS Danilo | 65 |
5 | DAY Benjamin | 68 |
6 | FAIRLY Caleb | 60 |
7 | STETINA Peter | 63 |
10 | HENAO Sergio | 61 |
13 | ATAPUMA Darwin | 59 |
14 | JONES Chris | 64 |
16 | STEWART Jackson | 72 |
17 | ROTH Ryan | 70 |
18 | BULGARELLI Otavio | 69 |
20 | BEYER Chad | 63 |
21 | LAPTHORNE Darren | 70 |
23 | CRAVEN Dan | 75 |
25 | HOWES Alex | 61 |
26 | BEWLEY Sam | 81 |
27 | CRUZ Antonio | 66 |
31 | KREDER Raymond | 70 |
36 | SUAREZ Camilo Andres | 67 |
37 | GAGNE Raphael | 67 |