Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 70
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Tuft
1
77 kgNorthey
4
69 kgSummerhill
7
70 kgMancebo
8
64 kgBoillat
11
68 kgHowes
14
61 kgGaimon
15
67 kgJones
16
64 kgRollin
17
83 kgDuchesne
18
75 kgFriedemann
22
75 kgMcCarty
24
68 kgFrattini
25
63 kgSulzberger
27
67 kgMamos
29
72 kgWalker
30
63 kgMeier
33
61 kgDay
35
68 kgCalabria
40
55 kgBoily
42
60 kgLachance
45
72 kg
1
77 kgNorthey
4
69 kgSummerhill
7
70 kgMancebo
8
64 kgBoillat
11
68 kgHowes
14
61 kgGaimon
15
67 kgJones
16
64 kgRollin
17
83 kgDuchesne
18
75 kgFriedemann
22
75 kgMcCarty
24
68 kgFrattini
25
63 kgSulzberger
27
67 kgMamos
29
72 kgWalker
30
63 kgMeier
33
61 kgDay
35
68 kgCalabria
40
55 kgBoily
42
60 kgLachance
45
72 kg
Weight (KG) →
Result →
83
55
1
45
# | Rider | Weight (KG) |
---|---|---|
1 | TUFT Svein | 77 |
4 | NORTHEY Michael James | 69 |
7 | SUMMERHILL Daniel | 70 |
8 | MANCEBO Francisco | 64 |
11 | BOILLAT Joris | 68 |
14 | HOWES Alex | 61 |
15 | GAIMON Phillip | 67 |
16 | JONES Chris | 64 |
17 | ROLLIN Dominique | 83 |
18 | DUCHESNE Antoine | 75 |
22 | FRIEDEMANN Matthias | 75 |
24 | MCCARTY Jonathan Patrick | 68 |
25 | FRATTINI Davide | 63 |
27 | SULZBERGER Bernard | 67 |
29 | MAMOS Philipp | 72 |
30 | WALKER Johnnie | 63 |
33 | MEIER Christian | 61 |
35 | DAY Benjamin | 68 |
40 | CALABRIA Fabio | 55 |
42 | BOILY David | 60 |
45 | LACHANCE Jean-Michel | 72 |