Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 22
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Skujiņš
1
70 kgȚvetcov
3
69 kgKragh Andersen
4
72 kgCarlsen
5
68 kgWoods
6
62 kgSmith
7
67 kgRoe
8
66 kgRoth
9
70 kgSchumacher
11
71 kgOrjuela
12
60 kgJenkins
13
63 kgLozano
15
63 kgKocjan
22
72 kgRosskopf
23
74 kgMannion
25
58 kgBudyak
26
53 kgTeruel
31
73 kgSelander
32
72 kgBogdanovičs
33
68 kgBichlmann
34
72 kgMegías
36
63 kgLachance
46
72 kgRathe
47
74 kgVink
49
73 kg
1
70 kgȚvetcov
3
69 kgKragh Andersen
4
72 kgCarlsen
5
68 kgWoods
6
62 kgSmith
7
67 kgRoe
8
66 kgRoth
9
70 kgSchumacher
11
71 kgOrjuela
12
60 kgJenkins
13
63 kgLozano
15
63 kgKocjan
22
72 kgRosskopf
23
74 kgMannion
25
58 kgBudyak
26
53 kgTeruel
31
73 kgSelander
32
72 kgBogdanovičs
33
68 kgBichlmann
34
72 kgMegías
36
63 kgLachance
46
72 kgRathe
47
74 kgVink
49
73 kg
Weight (KG) →
Result →
74
53
1
49
# | Rider | Weight (KG) |
---|---|---|
1 | SKUJIŅŠ Toms | 70 |
3 | ȚVETCOV Serghei | 69 |
4 | KRAGH ANDERSEN Asbjørn | 72 |
5 | CARLSEN Kirk | 68 |
6 | WOODS Michael | 62 |
7 | SMITH Dion | 67 |
8 | ROE Timothy | 66 |
9 | ROTH Ryan | 70 |
11 | SCHUMACHER Stefan | 71 |
12 | ORJUELA Fernando | 60 |
13 | JENKINS Max | 63 |
15 | LOZANO David | 63 |
22 | KOCJAN Jure | 72 |
23 | ROSSKOPF Joey | 74 |
25 | MANNION Gavin | 58 |
26 | BUDYAK Anatoliy | 53 |
31 | TERUEL Eloy | 73 |
32 | SELANDER Bjorn | 72 |
33 | BOGDANOVIČS Māris | 68 |
34 | BICHLMANN Daniel | 72 |
36 | MEGÍAS Javier | 63 |
46 | LACHANCE Jean-Michel | 72 |
47 | RATHE Jacob | 74 |
49 | VINK Michael | 73 |