Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 48
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Skujiņš
1
70 kgKragh Andersen
2
72 kgȚvetcov
3
69 kgWoods
4
62 kgKocjan
5
72 kgSchumacher
8
71 kgSmith
9
67 kgRosskopf
10
74 kgMegías
11
63 kgRoe
12
66 kgCarlsen
13
68 kgLozano
14
63 kgRoth
16
70 kgTeruel
19
73 kgJenkins
22
63 kgRathe
24
74 kgOrjuela
28
60 kgMannion
30
58 kgSelander
34
72 kg
1
70 kgKragh Andersen
2
72 kgȚvetcov
3
69 kgWoods
4
62 kgKocjan
5
72 kgSchumacher
8
71 kgSmith
9
67 kgRosskopf
10
74 kgMegías
11
63 kgRoe
12
66 kgCarlsen
13
68 kgLozano
14
63 kgRoth
16
70 kgTeruel
19
73 kgJenkins
22
63 kgRathe
24
74 kgOrjuela
28
60 kgMannion
30
58 kgSelander
34
72 kg
Weight (KG) →
Result →
74
58
1
34
# | Rider | Weight (KG) |
---|---|---|
1 | SKUJIŅŠ Toms | 70 |
2 | KRAGH ANDERSEN Asbjørn | 72 |
3 | ȚVETCOV Serghei | 69 |
4 | WOODS Michael | 62 |
5 | KOCJAN Jure | 72 |
8 | SCHUMACHER Stefan | 71 |
9 | SMITH Dion | 67 |
10 | ROSSKOPF Joey | 74 |
11 | MEGÍAS Javier | 63 |
12 | ROE Timothy | 66 |
13 | CARLSEN Kirk | 68 |
14 | LOZANO David | 63 |
16 | ROTH Ryan | 70 |
19 | TERUEL Eloy | 73 |
22 | JENKINS Max | 63 |
24 | RATHE Jacob | 74 |
28 | ORJUELA Fernando | 60 |
30 | MANNION Gavin | 58 |
34 | SELANDER Bjorn | 72 |