Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 3
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Skujiņš
1
70 kgWoods
4
62 kgCarlsen
5
68 kgKocjan
7
72 kgLozano
8
63 kgSmith
9
67 kgKragh Andersen
10
72 kgȚvetcov
11
69 kgRoth
13
70 kgJenkins
15
63 kgRoe
16
66 kgSelander
19
72 kgOrjuela
22
60 kgTeruel
23
73 kgSchumacher
26
71 kgBudyak
27
53 kgRathe
32
74 kgRosskopf
34
74 kgMannion
36
58 kgBogdanovičs
37
68 kgMegías
39
63 kgBichlmann
43
72 kgLachance
44
72 kgVink
49
73 kg
1
70 kgWoods
4
62 kgCarlsen
5
68 kgKocjan
7
72 kgLozano
8
63 kgSmith
9
67 kgKragh Andersen
10
72 kgȚvetcov
11
69 kgRoth
13
70 kgJenkins
15
63 kgRoe
16
66 kgSelander
19
72 kgOrjuela
22
60 kgTeruel
23
73 kgSchumacher
26
71 kgBudyak
27
53 kgRathe
32
74 kgRosskopf
34
74 kgMannion
36
58 kgBogdanovičs
37
68 kgMegías
39
63 kgBichlmann
43
72 kgLachance
44
72 kgVink
49
73 kg
Weight (KG) →
Result →
74
53
1
49
# | Rider | Weight (KG) |
---|---|---|
1 | SKUJIŅŠ Toms | 70 |
4 | WOODS Michael | 62 |
5 | CARLSEN Kirk | 68 |
7 | KOCJAN Jure | 72 |
8 | LOZANO David | 63 |
9 | SMITH Dion | 67 |
10 | KRAGH ANDERSEN Asbjørn | 72 |
11 | ȚVETCOV Serghei | 69 |
13 | ROTH Ryan | 70 |
15 | JENKINS Max | 63 |
16 | ROE Timothy | 66 |
19 | SELANDER Bjorn | 72 |
22 | ORJUELA Fernando | 60 |
23 | TERUEL Eloy | 73 |
26 | SCHUMACHER Stefan | 71 |
27 | BUDYAK Anatoliy | 53 |
32 | RATHE Jacob | 74 |
34 | ROSSKOPF Joey | 74 |
36 | MANNION Gavin | 58 |
37 | BOGDANOVIČS Māris | 68 |
39 | MEGÍAS Javier | 63 |
43 | BICHLMANN Daniel | 72 |
44 | LACHANCE Jean-Michel | 72 |
49 | VINK Michael | 73 |