Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 8
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Prades
1
63 kgSmith
2
67 kgTxurruka
3
58 kgSkujiņš
4
70 kgBarbero
5
66 kgBilbao
6
60 kgMilán
8
67 kgVerschoor
9
74.5 kgGuerreiro
10
65 kgSwirbul
11
65 kgChalapud
12
63 kgKocjan
13
72 kgRoth
15
70 kgPlanet
17
71 kgOronte
18
65 kgOram
23
68 kgCanty
25
60 kgMorton
28
62 kgBoivin
29
78 kgBobridge
33
65 kg
1
63 kgSmith
2
67 kgTxurruka
3
58 kgSkujiņš
4
70 kgBarbero
5
66 kgBilbao
6
60 kgMilán
8
67 kgVerschoor
9
74.5 kgGuerreiro
10
65 kgSwirbul
11
65 kgChalapud
12
63 kgKocjan
13
72 kgRoth
15
70 kgPlanet
17
71 kgOronte
18
65 kgOram
23
68 kgCanty
25
60 kgMorton
28
62 kgBoivin
29
78 kgBobridge
33
65 kg
Weight (KG) →
Result →
78
58
1
33
# | Rider | Weight (KG) |
---|---|---|
1 | PRADES Eduard | 63 |
2 | SMITH Dion | 67 |
3 | TXURRUKA Amets | 58 |
4 | SKUJIŅŠ Toms | 70 |
5 | BARBERO Carlos | 66 |
6 | BILBAO Pello | 60 |
8 | MILÁN Diego | 67 |
9 | VERSCHOOR Martijn | 74.5 |
10 | GUERREIRO Ruben | 65 |
11 | SWIRBUL Keegan | 65 |
12 | CHALAPUD Robinson | 63 |
13 | KOCJAN Jure | 72 |
15 | ROTH Ryan | 70 |
17 | PLANET Charles | 71 |
18 | ORONTE Emerson | 65 |
23 | ORAM James | 68 |
25 | CANTY Brendan | 60 |
28 | MORTON Lachlan | 62 |
29 | BOIVIN Guillaume | 78 |
33 | BOBRIDGE Jack | 65 |