Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 9
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Daniel
1
64 kgRäim
2
69 kgRoth
3
70 kgKuss
5
61 kgBeyer
6
63 kgLemus
8
61 kgHoule
9
72 kgButler
10
61 kgMorton
11
62 kgCraven
12
75 kgPowless
13
67 kgTurek
14
72 kgOwen
15
67 kgPerry
17
71 kgVerschoor
19
74.5 kgSagiv
20
68 kgBarta
21
61 kgDal-Cin
25
77 kgBoily
26
60 kgVandale
27
63 kgHorner
29
70 kgCataford
30
70 kgRoutley
31
69 kg
1
64 kgRäim
2
69 kgRoth
3
70 kgKuss
5
61 kgBeyer
6
63 kgLemus
8
61 kgHoule
9
72 kgButler
10
61 kgMorton
11
62 kgCraven
12
75 kgPowless
13
67 kgTurek
14
72 kgOwen
15
67 kgPerry
17
71 kgVerschoor
19
74.5 kgSagiv
20
68 kgBarta
21
61 kgDal-Cin
25
77 kgBoily
26
60 kgVandale
27
63 kgHorner
29
70 kgCataford
30
70 kgRoutley
31
69 kg
Weight (KG) →
Result →
77
60
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | DANIEL Gregory | 64 |
2 | RÄIM Mihkel | 69 |
3 | ROTH Ryan | 70 |
5 | KUSS Sepp | 61 |
6 | BEYER Chad | 63 |
8 | LEMUS Luis | 61 |
9 | HOULE Hugo | 72 |
10 | BUTLER Chris | 61 |
11 | MORTON Lachlan | 62 |
12 | CRAVEN Dan | 75 |
13 | POWLESS Neilson | 67 |
14 | TUREK Daniel | 72 |
15 | OWEN Logan | 67 |
17 | PERRY Benjamin | 71 |
19 | VERSCHOOR Martijn | 74.5 |
20 | SAGIV Guy | 68 |
21 | BARTA Will | 61 |
25 | DAL-CIN Matteo | 77 |
26 | BOILY David | 60 |
27 | VANDALE Danick | 63 |
29 | HORNER Chris | 70 |
30 | CATAFORD Alexander | 70 |
31 | ROUTLEY Will | 69 |