Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 3
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Daniel
1
64 kgHoule
3
72 kgPowless
4
67 kgRäim
5
69 kgRoth
6
70 kgKuss
8
61 kgMorton
9
62 kgBarta
10
61 kgBeyer
11
63 kgLemus
12
61 kgButler
14
61 kgCraven
16
75 kgTurek
17
72 kgDal-Cin
18
77 kgFlaksis
19
79 kgOwen
20
67 kgPerry
22
71 kgVerschoor
23
74.5 kgSagiv
25
68 kgBurke
26
67 kgBoily
30
60 kgVandale
31
63 kgHorner
34
70 kgCataford
35
70 kgRoutley
36
69 kg
1
64 kgHoule
3
72 kgPowless
4
67 kgRäim
5
69 kgRoth
6
70 kgKuss
8
61 kgMorton
9
62 kgBarta
10
61 kgBeyer
11
63 kgLemus
12
61 kgButler
14
61 kgCraven
16
75 kgTurek
17
72 kgDal-Cin
18
77 kgFlaksis
19
79 kgOwen
20
67 kgPerry
22
71 kgVerschoor
23
74.5 kgSagiv
25
68 kgBurke
26
67 kgBoily
30
60 kgVandale
31
63 kgHorner
34
70 kgCataford
35
70 kgRoutley
36
69 kg
Weight (KG) →
Result →
79
60
1
36
# | Rider | Weight (KG) |
---|---|---|
1 | DANIEL Gregory | 64 |
3 | HOULE Hugo | 72 |
4 | POWLESS Neilson | 67 |
5 | RÄIM Mihkel | 69 |
6 | ROTH Ryan | 70 |
8 | KUSS Sepp | 61 |
9 | MORTON Lachlan | 62 |
10 | BARTA Will | 61 |
11 | BEYER Chad | 63 |
12 | LEMUS Luis | 61 |
14 | BUTLER Chris | 61 |
16 | CRAVEN Dan | 75 |
17 | TUREK Daniel | 72 |
18 | DAL-CIN Matteo | 77 |
19 | FLAKSIS Andžs | 79 |
20 | OWEN Logan | 67 |
22 | PERRY Benjamin | 71 |
23 | VERSCHOOR Martijn | 74.5 |
25 | SAGIV Guy | 68 |
26 | BURKE Jack | 67 |
30 | BOILY David | 60 |
31 | VANDALE Danick | 63 |
34 | HORNER Chris | 70 |
35 | CATAFORD Alexander | 70 |
36 | ROUTLEY Will | 69 |