Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 69
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Flaksis
1
79 kgRusso
2
74 kgBurke
4
67 kgSwirbul
7
65 kgGarrison
10
76 kgHecht
12
72 kgStites
13
60 kgGervais
15
72 kgMancebo
18
64 kgAnderson
19
70 kgJones
23
64 kgHaidet
24
59 kgMilán
25
67 kgMannion
26
58 kgBennett
30
66 kgOliveira
31
66 kgTorres
38
70 kgRoth
39
70 kg
1
79 kgRusso
2
74 kgBurke
4
67 kgSwirbul
7
65 kgGarrison
10
76 kgHecht
12
72 kgStites
13
60 kgGervais
15
72 kgMancebo
18
64 kgAnderson
19
70 kgJones
23
64 kgHaidet
24
59 kgMilán
25
67 kgMannion
26
58 kgBennett
30
66 kgOliveira
31
66 kgTorres
38
70 kgRoth
39
70 kg
Weight (KG) →
Result →
79
58
1
39
# | Rider | Weight (KG) |
---|---|---|
1 | FLAKSIS Andžs | 79 |
2 | RUSSO Clément | 74 |
4 | BURKE Jack | 67 |
7 | SWIRBUL Keegan | 65 |
10 | GARRISON Ian | 76 |
12 | HECHT Gage | 72 |
13 | STITES Tyler | 60 |
15 | GERVAIS Laurent | 72 |
18 | MANCEBO Francisco | 64 |
19 | ANDERSON Edward | 70 |
23 | JONES Chris | 64 |
24 | HAIDET Lance | 59 |
25 | MILÁN Diego | 67 |
26 | MANNION Gavin | 58 |
30 | BENNETT Sean | 66 |
31 | OLIVEIRA Rui | 66 |
38 | TORRES Albert | 70 |
39 | ROTH Ryan | 70 |