Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 48
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Dal-Cin
3
77 kgKuss
5
61 kgȚvetcov
6
69 kgGarrison
7
76 kgLawless
9
72 kgRusso
10
74 kgSwirbul
11
65 kgFlaksis
14
79 kgBeyer
15
63 kgBennett
16
66 kgBurke
18
67 kgTorres
19
70 kgAnderson
20
70 kgStites
22
60 kgRoth
23
70 kgJones
24
64 kgCataford
27
70 kgMancebo
34
64 kgMannion
36
58 kgPutt
37
75 kgHecht
41
72 kg
3
77 kgKuss
5
61 kgȚvetcov
6
69 kgGarrison
7
76 kgLawless
9
72 kgRusso
10
74 kgSwirbul
11
65 kgFlaksis
14
79 kgBeyer
15
63 kgBennett
16
66 kgBurke
18
67 kgTorres
19
70 kgAnderson
20
70 kgStites
22
60 kgRoth
23
70 kgJones
24
64 kgCataford
27
70 kgMancebo
34
64 kgMannion
36
58 kgPutt
37
75 kgHecht
41
72 kg
Weight (KG) →
Result →
79
58
3
41
# | Rider | Weight (KG) |
---|---|---|
3 | DAL-CIN Matteo | 77 |
5 | KUSS Sepp | 61 |
6 | ȚVETCOV Serghei | 69 |
7 | GARRISON Ian | 76 |
9 | LAWLESS Chris | 72 |
10 | RUSSO Clément | 74 |
11 | SWIRBUL Keegan | 65 |
14 | FLAKSIS Andžs | 79 |
15 | BEYER Chad | 63 |
16 | BENNETT Sean | 66 |
18 | BURKE Jack | 67 |
19 | TORRES Albert | 70 |
20 | ANDERSON Edward | 70 |
22 | STITES Tyler | 60 |
23 | ROTH Ryan | 70 |
24 | JONES Chris | 64 |
27 | CATAFORD Alexander | 70 |
34 | MANCEBO Francisco | 64 |
36 | MANNION Gavin | 58 |
37 | PUTT Tanner | 75 |
41 | HECHT Gage | 72 |