Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 60
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Dal-Cin
1
77 kgGarrison
3
76 kgKuss
6
61 kgLawless
7
72 kgRusso
9
74 kgȚvetcov
10
69 kgTorres
12
70 kgSwirbul
13
65 kgFlaksis
15
79 kgBeyer
16
63 kgAnderson
18
70 kgBennett
19
66 kgStites
20
60 kgBurke
23
67 kgRoth
25
70 kgJones
26
64 kgCataford
29
70 kgMancebo
35
64 kgMannion
36
58 kgHernandez
38
74 kgHecht
39
72 kg
1
77 kgGarrison
3
76 kgKuss
6
61 kgLawless
7
72 kgRusso
9
74 kgȚvetcov
10
69 kgTorres
12
70 kgSwirbul
13
65 kgFlaksis
15
79 kgBeyer
16
63 kgAnderson
18
70 kgBennett
19
66 kgStites
20
60 kgBurke
23
67 kgRoth
25
70 kgJones
26
64 kgCataford
29
70 kgMancebo
35
64 kgMannion
36
58 kgHernandez
38
74 kgHecht
39
72 kg
Weight (KG) →
Result →
79
58
1
39
# | Rider | Weight (KG) |
---|---|---|
1 | DAL-CIN Matteo | 77 |
3 | GARRISON Ian | 76 |
6 | KUSS Sepp | 61 |
7 | LAWLESS Chris | 72 |
9 | RUSSO Clément | 74 |
10 | ȚVETCOV Serghei | 69 |
12 | TORRES Albert | 70 |
13 | SWIRBUL Keegan | 65 |
15 | FLAKSIS Andžs | 79 |
16 | BEYER Chad | 63 |
18 | ANDERSON Edward | 70 |
19 | BENNETT Sean | 66 |
20 | STITES Tyler | 60 |
23 | BURKE Jack | 67 |
25 | ROTH Ryan | 70 |
26 | JONES Chris | 64 |
29 | CATAFORD Alexander | 70 |
35 | MANCEBO Francisco | 64 |
36 | MANNION Gavin | 58 |
38 | HERNANDEZ Michael | 74 |
39 | HECHT Gage | 72 |