Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 35
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Milán
2
67 kgMancebo
3
64 kgFlaksis
4
79 kgRusso
6
74 kgAnderson
8
70 kgBurke
16
67 kgJones
17
64 kgSwirbul
18
65 kgHaidet
19
59 kgMannion
21
58 kgGarrison
22
76 kgOliveira
23
66 kgHecht
24
72 kgGervais
25
72 kgBennett
27
66 kgStites
28
60 kgTorres
37
70 kgRoth
42
70 kg
2
67 kgMancebo
3
64 kgFlaksis
4
79 kgRusso
6
74 kgAnderson
8
70 kgBurke
16
67 kgJones
17
64 kgSwirbul
18
65 kgHaidet
19
59 kgMannion
21
58 kgGarrison
22
76 kgOliveira
23
66 kgHecht
24
72 kgGervais
25
72 kgBennett
27
66 kgStites
28
60 kgTorres
37
70 kgRoth
42
70 kg
Weight (KG) →
Result →
79
58
2
42
# | Rider | Weight (KG) |
---|---|---|
2 | MILÁN Diego | 67 |
3 | MANCEBO Francisco | 64 |
4 | FLAKSIS Andžs | 79 |
6 | RUSSO Clément | 74 |
8 | ANDERSON Edward | 70 |
16 | BURKE Jack | 67 |
17 | JONES Chris | 64 |
18 | SWIRBUL Keegan | 65 |
19 | HAIDET Lance | 59 |
21 | MANNION Gavin | 58 |
22 | GARRISON Ian | 76 |
23 | OLIVEIRA Rui | 66 |
24 | HECHT Gage | 72 |
25 | GERVAIS Laurent | 72 |
27 | BENNETT Sean | 66 |
28 | STITES Tyler | 60 |
37 | TORRES Albert | 70 |
42 | ROTH Ryan | 70 |