Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 7
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Țvetcov
1
69 kgOliveira
2
66 kgPiccoli
3
65 kgPerry
5
71 kgRoberge
6
72 kgWhitehouse
7
58 kgCôté
8
74 kgMannion
10
58 kgBurke
12
67 kgVermeulen
15
66 kgSwirbul
17
65 kgVandale
18
63 kgTuft
19
77 kgGarrison
20
76 kgChrétien
22
65 kgRathe
24
74 kgMancebo
25
64 kgMurphy
30
67 kgGervais
31
72 kg
1
69 kgOliveira
2
66 kgPiccoli
3
65 kgPerry
5
71 kgRoberge
6
72 kgWhitehouse
7
58 kgCôté
8
74 kgMannion
10
58 kgBurke
12
67 kgVermeulen
15
66 kgSwirbul
17
65 kgVandale
18
63 kgTuft
19
77 kgGarrison
20
76 kgChrétien
22
65 kgRathe
24
74 kgMancebo
25
64 kgMurphy
30
67 kgGervais
31
72 kg
Weight (KG) →
Result →
77
58
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | ȚVETCOV Serghei | 69 |
2 | OLIVEIRA Rui | 66 |
3 | PICCOLI James | 65 |
5 | PERRY Benjamin | 71 |
6 | ROBERGE Adam | 72 |
7 | WHITEHOUSE Daniel | 58 |
8 | CÔTÉ Pier-André | 74 |
10 | MANNION Gavin | 58 |
12 | BURKE Jack | 67 |
15 | VERMEULEN Alexey | 66 |
17 | SWIRBUL Keegan | 65 |
18 | VANDALE Danick | 63 |
19 | TUFT Svein | 77 |
20 | GARRISON Ian | 76 |
22 | CHRÉTIEN Charles-Étienne | 65 |
24 | RATHE Jacob | 74 |
25 | MANCEBO Francisco | 64 |
30 | MURPHY Kyle | 67 |
31 | GERVAIS Laurent | 72 |