Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 18
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Țvetcov
2
69 kgRoberge
3
72 kgOliveira
4
66 kgBurke
6
67 kgVermeulen
7
66 kgCôté
8
74 kgGarrison
10
76 kgTuft
11
77 kgPerry
12
71 kgMurphy
13
81 kgWhitehouse
14
58 kgPutt
15
75 kgMannion
16
58 kgMilán
17
67 kgSwirbul
18
65 kgRathe
20
74 kgRoth
23
70 kgLaverack
24
62 kgPiccoli
27
65 kgMurphy
28
67 kgGranigan
30
76 kgDal-Cin
31
77 kgChrétien
32
65 kgGervais
33
72 kg
2
69 kgRoberge
3
72 kgOliveira
4
66 kgBurke
6
67 kgVermeulen
7
66 kgCôté
8
74 kgGarrison
10
76 kgTuft
11
77 kgPerry
12
71 kgMurphy
13
81 kgWhitehouse
14
58 kgPutt
15
75 kgMannion
16
58 kgMilán
17
67 kgSwirbul
18
65 kgRathe
20
74 kgRoth
23
70 kgLaverack
24
62 kgPiccoli
27
65 kgMurphy
28
67 kgGranigan
30
76 kgDal-Cin
31
77 kgChrétien
32
65 kgGervais
33
72 kg
Weight (KG) →
Result →
81
58
2
33
# | Rider | Weight (KG) |
---|---|---|
2 | ȚVETCOV Serghei | 69 |
3 | ROBERGE Adam | 72 |
4 | OLIVEIRA Rui | 66 |
6 | BURKE Jack | 67 |
7 | VERMEULEN Alexey | 66 |
8 | CÔTÉ Pier-André | 74 |
10 | GARRISON Ian | 76 |
11 | TUFT Svein | 77 |
12 | PERRY Benjamin | 71 |
13 | MURPHY John | 81 |
14 | WHITEHOUSE Daniel | 58 |
15 | PUTT Tanner | 75 |
16 | MANNION Gavin | 58 |
17 | MILÁN Diego | 67 |
18 | SWIRBUL Keegan | 65 |
20 | RATHE Jacob | 74 |
23 | ROTH Ryan | 70 |
24 | LAVERACK Edward | 62 |
27 | PICCOLI James | 65 |
28 | MURPHY Kyle | 67 |
30 | GRANIGAN Noah | 76 |
31 | DAL-CIN Matteo | 77 |
32 | CHRÉTIEN Charles-Étienne | 65 |
33 | GERVAIS Laurent | 72 |