Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Côté
3
74 kgPiccoli
5
65 kgȚvetcov
6
69 kgMilán
7
67 kgSwirbul
8
65 kgMurphy
9
67 kgRoberge
11
72 kgZimmer
16
68 kgGonzález
18
60 kgGee
19
72 kgFlaksis
22
79 kgMiller
23
54 kgÁlvarez
24
60 kgHuffman
25
71 kgChrétien
26
65 kgPavlič
27
65 kgLeplingard
28
68 kgAlbrecht
29
62 kgRoth
31
70 kgGervais
32
72 kg
3
74 kgPiccoli
5
65 kgȚvetcov
6
69 kgMilán
7
67 kgSwirbul
8
65 kgMurphy
9
67 kgRoberge
11
72 kgZimmer
16
68 kgGonzález
18
60 kgGee
19
72 kgFlaksis
22
79 kgMiller
23
54 kgÁlvarez
24
60 kgHuffman
25
71 kgChrétien
26
65 kgPavlič
27
65 kgLeplingard
28
68 kgAlbrecht
29
62 kgRoth
31
70 kgGervais
32
72 kg
Weight (KG) →
Result →
79
54
3
32
# | Rider | Weight (KG) |
---|---|---|
3 | CÔTÉ Pier-André | 74 |
5 | PICCOLI James | 65 |
6 | ȚVETCOV Serghei | 69 |
7 | MILÁN Diego | 67 |
8 | SWIRBUL Keegan | 65 |
9 | MURPHY Kyle | 67 |
11 | ROBERGE Adam | 72 |
16 | ZIMMER Matt | 68 |
18 | GONZÁLEZ Abner | 60 |
19 | GEE Derek | 72 |
22 | FLAKSIS Andžs | 79 |
23 | MILLER Barry | 54 |
24 | ÁLVAREZ Miguel Luis | 60 |
25 | HUFFMAN Evan | 71 |
26 | CHRÉTIEN Charles-Étienne | 65 |
27 | PAVLIČ Marko | 65 |
28 | LEPLINGARD Antoine | 68 |
29 | ALBRECHT Jasper | 62 |
31 | ROTH Ryan | 70 |
32 | GERVAIS Laurent | 72 |