Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 54
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Țvetcov
3
69 kgCôté
4
74 kgPiccoli
5
65 kgSwirbul
7
65 kgPrado
8
65 kgRoberge
9
72 kgMilán
10
67 kgMurphy
11
67 kgJamieson
12
75 kgZimmer
14
68 kgFlaksis
21
79 kgChrétien
25
65 kgLeplingard
28
68 kgMiller
29
54 kgHuffman
30
71 kgde Keijzer
32
72.6 kgAlbrecht
34
62 kgÁlvarez
35
60 kgGee
37
72 kgPavlič
39
65 kg
3
69 kgCôté
4
74 kgPiccoli
5
65 kgSwirbul
7
65 kgPrado
8
65 kgRoberge
9
72 kgMilán
10
67 kgMurphy
11
67 kgJamieson
12
75 kgZimmer
14
68 kgFlaksis
21
79 kgChrétien
25
65 kgLeplingard
28
68 kgMiller
29
54 kgHuffman
30
71 kgde Keijzer
32
72.6 kgAlbrecht
34
62 kgÁlvarez
35
60 kgGee
37
72 kgPavlič
39
65 kg
Weight (KG) →
Result →
79
54
3
39
# | Rider | Weight (KG) |
---|---|---|
3 | ȚVETCOV Serghei | 69 |
4 | CÔTÉ Pier-André | 74 |
5 | PICCOLI James | 65 |
7 | SWIRBUL Keegan | 65 |
8 | PRADO Ignacio de Jesús | 65 |
9 | ROBERGE Adam | 72 |
10 | MILÁN Diego | 67 |
11 | MURPHY Kyle | 67 |
12 | JAMIESON Adam | 75 |
14 | ZIMMER Matt | 68 |
21 | FLAKSIS Andžs | 79 |
25 | CHRÉTIEN Charles-Étienne | 65 |
28 | LEPLINGARD Antoine | 68 |
29 | MILLER Barry | 54 |
30 | HUFFMAN Evan | 71 |
32 | DE KEIJZER Gerd | 72.6 |
34 | ALBRECHT Jasper | 62 |
35 | ÁLVAREZ Miguel Luis | 60 |
37 | GEE Derek | 72 |
39 | PAVLIČ Marko | 65 |