Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 56
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Côté
3
74 kgȚvetcov
4
69 kgPiccoli
6
65 kgJamieson
7
75 kgPrado
8
65 kgSwirbul
9
65 kgRoberge
10
72 kgMilán
11
67 kgMurphy
14
67 kgZimmer
16
68 kgGonzález
20
60 kgFlaksis
26
79 kgChrétien
31
65 kgde Keijzer
32
72.6 kgLeplingard
34
68 kgMiller
35
54 kgHuffman
36
71 kgAlbrecht
38
62 kgÁlvarez
39
60 kgGee
40
72 kgGervais
41
72 kgPavlič
43
65 kg
3
74 kgȚvetcov
4
69 kgPiccoli
6
65 kgJamieson
7
75 kgPrado
8
65 kgSwirbul
9
65 kgRoberge
10
72 kgMilán
11
67 kgMurphy
14
67 kgZimmer
16
68 kgGonzález
20
60 kgFlaksis
26
79 kgChrétien
31
65 kgde Keijzer
32
72.6 kgLeplingard
34
68 kgMiller
35
54 kgHuffman
36
71 kgAlbrecht
38
62 kgÁlvarez
39
60 kgGee
40
72 kgGervais
41
72 kgPavlič
43
65 kg
Weight (KG) →
Result →
79
54
3
43
# | Rider | Weight (KG) |
---|---|---|
3 | CÔTÉ Pier-André | 74 |
4 | ȚVETCOV Serghei | 69 |
6 | PICCOLI James | 65 |
7 | JAMIESON Adam | 75 |
8 | PRADO Ignacio de Jesús | 65 |
9 | SWIRBUL Keegan | 65 |
10 | ROBERGE Adam | 72 |
11 | MILÁN Diego | 67 |
14 | MURPHY Kyle | 67 |
16 | ZIMMER Matt | 68 |
20 | GONZÁLEZ Abner | 60 |
26 | FLAKSIS Andžs | 79 |
31 | CHRÉTIEN Charles-Étienne | 65 |
32 | DE KEIJZER Gerd | 72.6 |
34 | LEPLINGARD Antoine | 68 |
35 | MILLER Barry | 54 |
36 | HUFFMAN Evan | 71 |
38 | ALBRECHT Jasper | 62 |
39 | ÁLVAREZ Miguel Luis | 60 |
40 | GEE Derek | 72 |
41 | GERVAIS Laurent | 72 |
43 | PAVLIČ Marko | 65 |