Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Valenti
1
69 kgStites
2
60 kgMiles
3
64 kgDal-Cin
4
77 kgGervais
5
72 kgJulien
7
70 kgRussell
8
64 kgMcGeough
10
76 kgPlamondon
13
72 kgOliphant
16
61 kgCouture
19
63 kgKleban
22
58 kgInkster
24
73 kgJussaume
32
70 kgBickmore
34
74 kgGagné
36
64 kgSteman
38
71 kgMoore
40
62 kgWalton
43
68 kg
1
69 kgStites
2
60 kgMiles
3
64 kgDal-Cin
4
77 kgGervais
5
72 kgJulien
7
70 kgRussell
8
64 kgMcGeough
10
76 kgPlamondon
13
72 kgOliphant
16
61 kgCouture
19
63 kgKleban
22
58 kgInkster
24
73 kgJussaume
32
70 kgBickmore
34
74 kgGagné
36
64 kgSteman
38
71 kgMoore
40
62 kgWalton
43
68 kg
Weight (KG) →
Result →
77
58
1
43
# | Rider | Weight (KG) |
---|---|---|
1 | VALENTI Luke | 69 |
2 | STITES Tyler | 60 |
3 | MILES Carson | 64 |
4 | DAL-CIN Matteo | 77 |
5 | GERVAIS Laurent | 72 |
7 | JULIEN Matisse | 70 |
8 | RUSSELL Evan | 64 |
10 | MCGEOUGH Cormac | 76 |
13 | PLAMONDON Joel | 72 |
16 | OLIPHANT Aidan | 61 |
19 | COUTURE Samuel | 63 |
22 | KLEBAN Nick | 58 |
24 | INKSTER Eric | 73 |
32 | JUSSAUME Tristan | 70 |
34 | BICKMORE Cade | 74 |
36 | GAGNÉ Étienne | 64 |
38 | STEMAN Jip | 71 |
40 | MOORE Manu | 62 |
43 | WALTON Jonas | 68 |