Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 69
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Stites
1
60 kgGervais
2
72 kgDal-Cin
3
77 kgValenti
5
69 kgMcGeough
6
76 kgJulien
7
70 kgMiles
9
64 kgOliphant
13
61 kgRussell
15
64 kgPlamondon
18
72 kgInkster
24
73 kgCouture
27
67 kgWalton
30
68 kgBickmore
32
74 kgSteman
34
71 kgJussaume
37
70 kgKleban
39
58 kgGagné
43
64 kgMoore
45
62 kg
1
60 kgGervais
2
72 kgDal-Cin
3
77 kgValenti
5
69 kgMcGeough
6
76 kgJulien
7
70 kgMiles
9
64 kgOliphant
13
61 kgRussell
15
64 kgPlamondon
18
72 kgInkster
24
73 kgCouture
27
67 kgWalton
30
68 kgBickmore
32
74 kgSteman
34
71 kgJussaume
37
70 kgKleban
39
58 kgGagné
43
64 kgMoore
45
62 kg
Weight (KG) →
Result →
77
58
1
45
# | Rider | Weight (KG) |
---|---|---|
1 | STITES Tyler | 60 |
2 | GERVAIS Laurent | 72 |
3 | DAL-CIN Matteo | 77 |
5 | VALENTI Luke | 69 |
6 | MCGEOUGH Cormac | 76 |
7 | JULIEN Matisse | 70 |
9 | MILES Carson | 64 |
13 | OLIPHANT Aidan | 61 |
15 | RUSSELL Evan | 64 |
18 | PLAMONDON Joel | 72 |
24 | INKSTER Eric | 73 |
27 | COUTURE Samuel | 67 |
30 | WALTON Jonas | 68 |
32 | BICKMORE Cade | 74 |
34 | STEMAN Jip | 71 |
37 | JUSSAUME Tristan | 70 |
39 | KLEBAN Nick | 58 |
43 | GAGNÉ Étienne | 64 |
45 | MOORE Manu | 62 |