Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 23
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Stites
1
60 kgBurnett
2
73 kgGervais
3
72 kgMcDunphy
6
70 kgFoley
7
72 kgVerhoeff
9
76 kgLópez
10
64 kgStrong
15
66 kgChrétien
16
65 kgMiles
17
64 kgPaquet
24
60 kgBickmore
26
74 kgHaug
27
67 kgAnderson
30
82 kgFelton
32
63 kgInkster
37
73 kgMoore
39
62 kgFlanagan
40
67 kgJuneau
41
67 kgCastillo
43
72 kg
1
60 kgBurnett
2
73 kgGervais
3
72 kgMcDunphy
6
70 kgFoley
7
72 kgVerhoeff
9
76 kgLópez
10
64 kgStrong
15
66 kgChrétien
16
65 kgMiles
17
64 kgPaquet
24
60 kgBickmore
26
74 kgHaug
27
67 kgAnderson
30
82 kgFelton
32
63 kgInkster
37
73 kgMoore
39
62 kgFlanagan
40
67 kgJuneau
41
67 kgCastillo
43
72 kg
Weight (KG) →
Result →
82
60
1
43
# | Rider | Weight (KG) |
---|---|---|
1 | STITES Tyler | 60 |
2 | BURNETT Josh | 73 |
3 | GERVAIS Laurent | 72 |
6 | MCDUNPHY Conn | 70 |
7 | FOLEY Michael | 72 |
9 | VERHOEFF Stefan | 76 |
10 | LÓPEZ Ian | 64 |
15 | STRONG Hayden | 66 |
16 | CHRÉTIEN Charles-Étienne | 65 |
17 | MILES Carson | 64 |
24 | PAQUET Tom | 60 |
26 | BICKMORE Cade | 74 |
27 | HAUG Kieran | 67 |
30 | ANDERSON Joshua | 82 |
32 | FELTON Quinn | 63 |
37 | INKSTER Eric | 73 |
39 | MOORE Manu | 62 |
40 | FLANAGAN Liam | 67 |
41 | JUNEAU Francis | 67 |
43 | CASTILLO Ulises Alfredo | 72 |