Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 16
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Stites
1
60 kgGervais
2
72 kgBurnett
3
73 kgVerhoeff
6
76 kgMcDunphy
7
70 kgPaquet
9
60 kgFoley
11
72 kgLópez
15
64 kgStrong
19
66 kgChrétien
20
65 kgMiles
21
64 kgBickmore
27
74 kgHaug
28
67 kgAnderson
30
82 kgFlanagan
34
67 kgFelton
35
63 kgInkster
39
73 kgPeloquin
40
67 kgMoore
42
62 kgCastillo
43
72 kgPlamondon
44
72 kgJuneau
45
67 kg
1
60 kgGervais
2
72 kgBurnett
3
73 kgVerhoeff
6
76 kgMcDunphy
7
70 kgPaquet
9
60 kgFoley
11
72 kgLópez
15
64 kgStrong
19
66 kgChrétien
20
65 kgMiles
21
64 kgBickmore
27
74 kgHaug
28
67 kgAnderson
30
82 kgFlanagan
34
67 kgFelton
35
63 kgInkster
39
73 kgPeloquin
40
67 kgMoore
42
62 kgCastillo
43
72 kgPlamondon
44
72 kgJuneau
45
67 kg
Weight (KG) →
Result →
82
60
1
45
# | Rider | Weight (KG) |
---|---|---|
1 | STITES Tyler | 60 |
2 | GERVAIS Laurent | 72 |
3 | BURNETT Josh | 73 |
6 | VERHOEFF Stefan | 76 |
7 | MCDUNPHY Conn | 70 |
9 | PAQUET Tom | 60 |
11 | FOLEY Michael | 72 |
15 | LÓPEZ Ian | 64 |
19 | STRONG Hayden | 66 |
20 | CHRÉTIEN Charles-Étienne | 65 |
21 | MILES Carson | 64 |
27 | BICKMORE Cade | 74 |
28 | HAUG Kieran | 67 |
30 | ANDERSON Joshua | 82 |
34 | FLANAGAN Liam | 67 |
35 | FELTON Quinn | 63 |
39 | INKSTER Eric | 73 |
40 | PELOQUIN Leonard | 67 |
42 | MOORE Manu | 62 |
43 | CASTILLO Ulises Alfredo | 72 |
44 | PLAMONDON Joel | 72 |
45 | JUNEAU Francis | 67 |