Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 3
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Stites
2
60 kgMcDunphy
3
70 kgBurnett
5
73 kgVerhoeff
8
76 kgHaug
11
67 kgChrétien
12
65 kgLópez
15
64 kgRenaud-Tremblay
16
60 kgMiles
18
64 kgBickmore
21
74 kgRussell
24
64 kgAnderson
26
82 kgFlanagan
29
67 kgFelton
31
63 kgInkster
35
73 kgPeloquin
36
67 kgCastillo
38
72 kgJuneau
39
67 kg
2
60 kgMcDunphy
3
70 kgBurnett
5
73 kgVerhoeff
8
76 kgHaug
11
67 kgChrétien
12
65 kgLópez
15
64 kgRenaud-Tremblay
16
60 kgMiles
18
64 kgBickmore
21
74 kgRussell
24
64 kgAnderson
26
82 kgFlanagan
29
67 kgFelton
31
63 kgInkster
35
73 kgPeloquin
36
67 kgCastillo
38
72 kgJuneau
39
67 kg
Weight (KG) →
Result →
82
60
2
39
# | Rider | Weight (KG) |
---|---|---|
2 | STITES Tyler | 60 |
3 | MCDUNPHY Conn | 70 |
5 | BURNETT Josh | 73 |
8 | VERHOEFF Stefan | 76 |
11 | HAUG Kieran | 67 |
12 | CHRÉTIEN Charles-Étienne | 65 |
15 | LÓPEZ Ian | 64 |
16 | RENAUD-TREMBLAY Sasha | 60 |
18 | MILES Carson | 64 |
21 | BICKMORE Cade | 74 |
24 | RUSSELL Evan | 64 |
26 | ANDERSON Joshua | 82 |
29 | FLANAGAN Liam | 67 |
31 | FELTON Quinn | 63 |
35 | INKSTER Eric | 73 |
36 | PELOQUIN Leonard | 67 |
38 | CASTILLO Ulises Alfredo | 72 |
39 | JUNEAU Francis | 67 |