Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 68
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Dietziker
1
67 kgKnees
3
81 kgShpilevsky
5
78 kgGerdemann
6
71 kgBengsch
9
85 kgCummings
10
73 kgWagner
12
75 kgSieberg
13
80 kgPedersen
23
62 kgStalder
29
58 kgKozontchuk
31
75 kgSoutham
32
69 kgHonig
38
61 kgGreipel
45
80 kgMartens
49
69 kgBommel
50
75 kgFriedemann
53
75 kgMusiol
60
70 kgKrauß
88
81 kgHoffmann
91
65 kg
1
67 kgKnees
3
81 kgShpilevsky
5
78 kgGerdemann
6
71 kgBengsch
9
85 kgCummings
10
73 kgWagner
12
75 kgSieberg
13
80 kgPedersen
23
62 kgStalder
29
58 kgKozontchuk
31
75 kgSoutham
32
69 kgHonig
38
61 kgGreipel
45
80 kgMartens
49
69 kgBommel
50
75 kgFriedemann
53
75 kgMusiol
60
70 kgKrauß
88
81 kgHoffmann
91
65 kg
Weight (KG) →
Result →
85
58
1
91
# | Rider | Weight (KG) |
---|---|---|
1 | DIETZIKER Andreas | 67 |
3 | KNEES Christian | 81 |
5 | SHPILEVSKY Boris | 78 |
6 | GERDEMANN Linus | 71 |
9 | BENGSCH Robert | 85 |
10 | CUMMINGS Steve | 73 |
12 | WAGNER Robert | 75 |
13 | SIEBERG Marcel | 80 |
23 | PEDERSEN Martin | 62 |
29 | STALDER Florian | 58 |
31 | KOZONTCHUK Dmitry | 75 |
32 | SOUTHAM Tom | 69 |
38 | HONIG Reinier | 61 |
45 | GREIPEL André | 80 |
49 | MARTENS Paul | 69 |
50 | BOMMEL Henning | 75 |
53 | FRIEDEMANN Matthias | 75 |
60 | MUSIOL Daniel | 70 |
88 | KRAUß Sven | 81 |
91 | HOFFMANN Erik | 65 |