Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight + 26
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Greipel
1
80 kgMusiol
2
70 kgMartens
3
69 kgSieberg
4
80 kgDietziker
6
67 kgShpilevsky
18
78 kgFriedemann
32
75 kgBommel
37
75 kgPedersen
50
62 kgKnees
51
81 kgStalder
58
58 kgHonig
60
61 kgHoffmann
63
65 kgWagner
71
75 kgKozontchuk
92
75 kgBengsch
105
85 kgGerdemann
106
71 kgDuijn
107
73 kgCummings
110
73 kgSoutham
114
69 kgKrauß
123
81 kg
1
80 kgMusiol
2
70 kgMartens
3
69 kgSieberg
4
80 kgDietziker
6
67 kgShpilevsky
18
78 kgFriedemann
32
75 kgBommel
37
75 kgPedersen
50
62 kgKnees
51
81 kgStalder
58
58 kgHonig
60
61 kgHoffmann
63
65 kgWagner
71
75 kgKozontchuk
92
75 kgBengsch
105
85 kgGerdemann
106
71 kgDuijn
107
73 kgCummings
110
73 kgSoutham
114
69 kgKrauß
123
81 kg
Weight (KG) →
Result →
85
58
1
123
# | Rider | Weight (KG) |
---|---|---|
1 | GREIPEL André | 80 |
2 | MUSIOL Daniel | 70 |
3 | MARTENS Paul | 69 |
4 | SIEBERG Marcel | 80 |
6 | DIETZIKER Andreas | 67 |
18 | SHPILEVSKY Boris | 78 |
32 | FRIEDEMANN Matthias | 75 |
37 | BOMMEL Henning | 75 |
50 | PEDERSEN Martin | 62 |
51 | KNEES Christian | 81 |
58 | STALDER Florian | 58 |
60 | HONIG Reinier | 61 |
63 | HOFFMANN Erik | 65 |
71 | WAGNER Robert | 75 |
92 | KOZONTCHUK Dmitry | 75 |
105 | BENGSCH Robert | 85 |
106 | GERDEMANN Linus | 71 |
107 | DUIJN Huub | 73 |
110 | CUMMINGS Steve | 73 |
114 | SOUTHAM Tom | 69 |
123 | KRAUß Sven | 81 |