Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 99
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Dietziker
1
67 kgStalder
3
58 kgKnees
4
81 kgShpilevsky
6
78 kgGerdemann
8
71 kgMartens
14
69 kgCummings
15
73 kgBengsch
16
85 kgWagner
21
75 kgSieberg
22
80 kgMusiol
23
70 kgGreipel
35
80 kgBommel
37
75 kgFriedemann
40
75 kgKrauß
41
81 kgDuijn
46
73 kgPedersen
51
62 kgHoffmann
57
65 kgKozontchuk
73
75 kgHonig
86
61 kgSoutham
90
69 kg
1
67 kgStalder
3
58 kgKnees
4
81 kgShpilevsky
6
78 kgGerdemann
8
71 kgMartens
14
69 kgCummings
15
73 kgBengsch
16
85 kgWagner
21
75 kgSieberg
22
80 kgMusiol
23
70 kgGreipel
35
80 kgBommel
37
75 kgFriedemann
40
75 kgKrauß
41
81 kgDuijn
46
73 kgPedersen
51
62 kgHoffmann
57
65 kgKozontchuk
73
75 kgHonig
86
61 kgSoutham
90
69 kg
Weight (KG) →
Result →
85
58
1
90
# | Rider | Weight (KG) |
---|---|---|
1 | DIETZIKER Andreas | 67 |
3 | STALDER Florian | 58 |
4 | KNEES Christian | 81 |
6 | SHPILEVSKY Boris | 78 |
8 | GERDEMANN Linus | 71 |
14 | MARTENS Paul | 69 |
15 | CUMMINGS Steve | 73 |
16 | BENGSCH Robert | 85 |
21 | WAGNER Robert | 75 |
22 | SIEBERG Marcel | 80 |
23 | MUSIOL Daniel | 70 |
35 | GREIPEL André | 80 |
37 | BOMMEL Henning | 75 |
40 | FRIEDEMANN Matthias | 75 |
41 | KRAUß Sven | 81 |
46 | DUIJN Huub | 73 |
51 | PEDERSEN Martin | 62 |
57 | HOFFMANN Erik | 65 |
73 | KOZONTCHUK Dmitry | 75 |
86 | HONIG Reinier | 61 |
90 | SOUTHAM Tom | 69 |