Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 96
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Dietziker
1
67 kgKnees
3
81 kgShpilevsky
5
78 kgGerdemann
7
71 kgCummings
11
73 kgBengsch
12
85 kgStalder
14
58 kgWagner
18
75 kgSieberg
19
80 kgGreipel
20
80 kgMartens
30
69 kgBommel
32
75 kgFriedemann
35
75 kgPedersen
42
62 kgHoffmann
44
65 kgKozontchuk
58
75 kgDuijn
65
73 kgSoutham
70
69 kgHonig
91
61 kgKrauß
115
81 kgMusiol
116
70 kg
1
67 kgKnees
3
81 kgShpilevsky
5
78 kgGerdemann
7
71 kgCummings
11
73 kgBengsch
12
85 kgStalder
14
58 kgWagner
18
75 kgSieberg
19
80 kgGreipel
20
80 kgMartens
30
69 kgBommel
32
75 kgFriedemann
35
75 kgPedersen
42
62 kgHoffmann
44
65 kgKozontchuk
58
75 kgDuijn
65
73 kgSoutham
70
69 kgHonig
91
61 kgKrauß
115
81 kgMusiol
116
70 kg
Weight (KG) →
Result →
85
58
1
116
# | Rider | Weight (KG) |
---|---|---|
1 | DIETZIKER Andreas | 67 |
3 | KNEES Christian | 81 |
5 | SHPILEVSKY Boris | 78 |
7 | GERDEMANN Linus | 71 |
11 | CUMMINGS Steve | 73 |
12 | BENGSCH Robert | 85 |
14 | STALDER Florian | 58 |
18 | WAGNER Robert | 75 |
19 | SIEBERG Marcel | 80 |
20 | GREIPEL André | 80 |
30 | MARTENS Paul | 69 |
32 | BOMMEL Henning | 75 |
35 | FRIEDEMANN Matthias | 75 |
42 | PEDERSEN Martin | 62 |
44 | HOFFMANN Erik | 65 |
58 | KOZONTCHUK Dmitry | 75 |
65 | DUIJN Huub | 73 |
70 | SOUTHAM Tom | 69 |
91 | HONIG Reinier | 61 |
115 | KRAUß Sven | 81 |
116 | MUSIOL Daniel | 70 |