Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3.1 * weight + 271
This means that on average for every extra kilogram weight a rider loses -3.1 positions in the result.
Rasmussen
1
88 kgCavendish
2
70 kgSchets
3
74 kgPoulhiès
7
75 kgStauff
8
82 kgMaes
11
78 kgRoelandts
14
78 kgReimer
25
69 kgOffredo
37
69 kgRolland
63
70 kgCapelli
70
78 kgCoppel
71
64 kgPineau
75
68 kgGeschke
82
64 kgSeubert
83
73 kgDe Poortere
84
70 kgClancy
86
79 kgJeandesboz
90
69 kgDe Ketele
97
66 kg
1
88 kgCavendish
2
70 kgSchets
3
74 kgPoulhiès
7
75 kgStauff
8
82 kgMaes
11
78 kgRoelandts
14
78 kgReimer
25
69 kgOffredo
37
69 kgRolland
63
70 kgCapelli
70
78 kgCoppel
71
64 kgPineau
75
68 kgGeschke
82
64 kgSeubert
83
73 kgDe Poortere
84
70 kgClancy
86
79 kgJeandesboz
90
69 kgDe Ketele
97
66 kg
Weight (KG) →
Result →
88
64
1
97
# | Rider | Weight (KG) |
---|---|---|
1 | RASMUSSEN Alex | 88 |
2 | CAVENDISH Mark | 70 |
3 | SCHETS Steve | 74 |
7 | POULHIÈS Stéphane | 75 |
8 | STAUFF Andreas | 82 |
11 | MAES Nikolas | 78 |
14 | ROELANDTS Jürgen | 78 |
25 | REIMER Martin | 69 |
37 | OFFREDO Yoann | 69 |
63 | ROLLAND Pierre | 70 |
70 | CAPELLI Ermano | 78 |
71 | COPPEL Jérôme | 64 |
75 | PINEAU Cédric | 68 |
82 | GESCHKE Simon | 64 |
83 | SEUBERT Timon | 73 |
84 | DE POORTERE Ingmar | 70 |
86 | CLANCY Edward | 79 |
90 | JEANDESBOZ Fabrice | 69 |
97 | DE KETELE Kenny | 66 |