Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 14
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Rasmussen
1
88 kgCoppel
3
64 kgCavendish
4
70 kgMaes
8
78 kgRolland
9
70 kgClancy
11
79 kgJeandesboz
13
69 kgCapelli
17
78 kgGeschke
18
64 kgOffredo
25
69 kgPineau
26
68 kgRoelandts
28
78 kgReimer
29
69 kgDe Ketele
36
66 kgDe Poortere
54
70 kgSchets
68
74 kgPoulhiès
71
75 kgSeubert
91
73 kgStauff
95
82 kg
1
88 kgCoppel
3
64 kgCavendish
4
70 kgMaes
8
78 kgRolland
9
70 kgClancy
11
79 kgJeandesboz
13
69 kgCapelli
17
78 kgGeschke
18
64 kgOffredo
25
69 kgPineau
26
68 kgRoelandts
28
78 kgReimer
29
69 kgDe Ketele
36
66 kgDe Poortere
54
70 kgSchets
68
74 kgPoulhiès
71
75 kgSeubert
91
73 kgStauff
95
82 kg
Weight (KG) →
Result →
88
64
1
95
# | Rider | Weight (KG) |
---|---|---|
1 | RASMUSSEN Alex | 88 |
3 | COPPEL Jérôme | 64 |
4 | CAVENDISH Mark | 70 |
8 | MAES Nikolas | 78 |
9 | ROLLAND Pierre | 70 |
11 | CLANCY Edward | 79 |
13 | JEANDESBOZ Fabrice | 69 |
17 | CAPELLI Ermano | 78 |
18 | GESCHKE Simon | 64 |
25 | OFFREDO Yoann | 69 |
26 | PINEAU Cédric | 68 |
28 | ROELANDTS Jürgen | 78 |
29 | REIMER Martin | 69 |
36 | DE KETELE Kenny | 66 |
54 | DE POORTERE Ingmar | 70 |
68 | SCHETS Steve | 74 |
71 | POULHIÈS Stéphane | 75 |
91 | SEUBERT Timon | 73 |
95 | STAUFF Andreas | 82 |